Skip to main content

CPG-Based Control of Humanoid Robot Locomotion

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

Central pattern generators (CPGs) are neural circuits found in vertebrate and invertebrate animals that produce oscillatory patterns for rhythmic motor behaviors. When applied to robotics, they are often used as building blocks for the generation of walking controllers. From a mathematical viewpoint, CPGs are dynamical systems exhibiting limit cycle behaviors, which offer several advantages when applied to the locomotion of robots. One of their main advantages is that they can be dynamically coupled to the mechanical system, which can enforce the synchronization of the CPG network with the body and the environment, through mechanical entrainment using resonance tuning or through explicit learning of the frequency components and the phases of an external signal. Moreover, they permit easy modulation of the gait speed and incorporation of gait transition mechanisms. The recovery from perturbations is also inherently encoded in the system, and the need for an accurate model of the robot is often not required. Finally, if the CPG controller is implemented in a distributed fashion, e.g., on several microcontrollers, it allows simplified reconfiguration or adaptation of the robot to a missing or a nonfunctional part.

After an historical overview of CPG-based models in the first section of the chapter (Sect. 1), we describe different conceptual models in Sect. 2 and review important methodological considerations in the implementation of a CPG controller for robotic applications in Sect. 3. Finally, in Sect. 4, we review some applications of CPGs in robots, with a strong emphasis on the control of humanoid locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abe, N. Yamada, Modulation of elbow joint stiffness in a vertical plane during cyclic movement at lower or higher frequencies than natural frequency. Exp. Brain Res. 153(3), 394–399 (2003)

    Article  Google Scholar 

  2. M. Ajallooeian, J. van den Kieboom, A. Mukovskiy, M.A. Giese, A.J. Ijspeert, A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Physica D Nonlinear Phenom. 263, 41–56 (2013)

    Article  MathSciNet  Google Scholar 

  3. S. Aoi, K. Tsuchiya, Locomotion control of a biped robot using nonlinear oscillators. Auton. Robot. 19(3), 219–232 (2005)

    Article  Google Scholar 

  4. T.G. Brown, The intrinsic factors in the act of progression in the mammal, in Proceedings of the Royal Society of London. Series B, 1911, pp. 308–319

    Article  Google Scholar 

  5. J. Buchli, A.J. Ijspeert, Distributed central pattern generator model for robotics application based on phase sensitivity analysis, in Biologically Inspired Approaches to Advanced Information Technology (Springer, 2004), pp. 333–349

    Google Scholar 

  6. J. Buchli, L. Righetti, A.J. Ijspeert, A dynamical systems approach to learning: a frequency-adaptive hopper robot, in Advances in Artificial Life (Springer, 2005), pp. 210–220

    Google Scholar 

  7. V. Dietz, Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125(12), 2626–2634 (2002)

    Article  Google Scholar 

  8. M.R. Dimitrijevic, Y. Gerasimenko, M.M. Pinter, Evidence for a spinal central pattern generator in humansa. Ann. N. Y. Acad. Sci. 860(1):360–376 (1998)

    Article  Google Scholar 

  9. J. Duysens, H.W.A.A. Van de Crommert, Neural control of locomotion; Part 1: the central pattern generator from cats to humans. Gait Posture 7(2), 131–141 (1998)

    Article  Google Scholar 

  10. G. Endo, J. Morimoto, J. Nakanishi, G. Cheng, An empirical exploration of a neural oscillator for biped locomotion control, in International Conference on Robotics and Automation (IEEE, 2004)

    Google Scholar 

  11. A. Gams, T. Petric, A. Ude, L. Žlajpah, Performing Periodic Tasks: On-line Learning, Adaptation and Synchronization with External Signals. (INTECH Open Access Publisher, London, 2012)

    Google Scholar 

  12. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge university press, Cambridge/New York, 2002)

    Google Scholar 

  13. H. Geyer, H. Herr, A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)

    Article  Google Scholar 

  14. S. Grillner, Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696), 143–149 (1985)

    Article  Google Scholar 

  15. S. Grillner, Control of locomotion in bipeds, tetrapods, and fish, in Handbook of Physiology, Sect 1: The Nervous System Vol II: Motor Control, ed. by V.B. Brooks (Waverly Press, Maryland, 2011), pp. 1179–1236

    Google Scholar 

  16. S. Grillner, A.P. Georgopoulos, L.M. Jordan, P.S.G. Stein, S. Grillner, Neurons, Networks, and Motor Behavior (MIT Press, Cambridge, 1997)

    Google Scholar 

  17. V.S. Gurfinkel, M.L. Shik, The control of posture and locomotion, in Motor Control (Springer, Boston, 1974), pp. 217–234

    Chapter  Google Scholar 

  18. M.K. Habib, K. Watanabe, K. Izumi, Biped locomotion using CPG with sensory interaction, in International Symposium on Industrial Electronics (IEEE, 2009)

    Google Scholar 

  19. K. Hase, K. Miyashita, S. Ok, Y. Arakawa, Human gait simulation with a neuromusculoskeletal model and evolutionary computation. J. Vis. Comput. Animat. 14(2), 73–92 (2003)

    Article  Google Scholar 

  20. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  21. S.L. Hooper, Central pattern generators, in Encyclopedia of Life Sciences (John Wiley, Chichester, 2001)

    Google Scholar 

  22. A.J. Ijspeert, A. Crespi, D. Ryczko, J.-M. Cabelguen, From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  23. A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning attractor landscapes for learning motor primitives. Technical report, 2002

    Google Scholar 

  24. A.J. Ijspeert, J. Nakanishi, S. Schaal, Movement imitation with nonlinear dynamical systems in humanoid robots, in International Conference on Robotics and Automation (IEEE, 2002), pp. 1398–1403

    Google Scholar 

  25. E.M. Izhikevich et al. Simple model of spiking neurons. Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  26. E.M. Izhikevich, R. FitzHugh, Fitzhugh-nagumo model. Scholarpedia 1(9), 1349 (2006)

    Article  Google Scholar 

  27. Y. Kim, Y. Tagawa, G. Obinata, K. Hase, Robust control of CPG-based 3D neuromusculoskeletal walking model. Biol. Cybern. 105(3–4), 269–282 (2011)

    Article  Google Scholar 

  28. H. Kitajima, K. Tsumoto, T. Yoshinaga, K. Aihara, H. Kawakami, Bifurcations in Morris–Lecar neuron model. Neurocomputing 69(4), 293–316 (2006)

    Article  Google Scholar 

  29. G.L. Liu, M.K. Habib, K. Watanabe, K. Izumi, Central pattern generators based on Matsuoka oscillators for the locomotion of biped robots. Artif. Life Robot. 12(1–2), 264–269 (2008)

    Article  Google Scholar 

  30. A. Lundberg, Half-centres revisited, in Regulatory Functions of the CNS. Motion and Organization Principles (Pergamon press, Budapest, 1981), pp. 155–167

    Chapter  Google Scholar 

  31. T. Matsubara, J. Morimoto, J. Nakanishi, M.-a. Sato, K. Doya, Learning CPG-based biped locomotion with a policy gradient method. Robot. Auton. Syst. 54(11), 911–920 (2006)

    Article  Google Scholar 

  32. K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52(6), 367–376 (1985)

    Article  MathSciNet  Google Scholar 

  33. D.A. McCrea, I.A. Rybak, Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57(1), 134–146 (2008)

    Article  Google Scholar 

  34. S. Miller, P.D. Scott, The spinal locomotor generator. Exp. Brain Res. 30(2–3), 387–403 (1977)

    Google Scholar 

  35. S. Miyakoshi, G. Taga, Y. Kuniyoshi, A. Nagakubo, Three dimensional bipedal stepping motion using neural oscillators-towards humanoid motion in the real world, in International Conference on Intelligent Robots and Systems (IEEE, 1998)

    Google Scholar 

  36. J. Morimoto, G. Endo, J. Nakanishi, G. Cheng, A biologically inspired biped locomotion strategy for humanoid robots: modulation of sinusoidal patterns by a coupled oscillator model. Trans. Robot. 24(1), 185–190 (2008)

    Article  Google Scholar 

  37. J. Morimoto, G. Endo, J. Nakanishi, S.-H. Hyon, G. Cheng, D. Bentivegna, C.G. Atkeso, Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking, in International Conference on Robotics and Automation (IEEE, 2006)

    Google Scholar 

  38. Y. Nakamura, T. Mori, M.-a. Sato, S. Ishii, Reinforcement learning for a biped robot based on a CPG-actor-critic method. Neural Netw. 20(6), 723–735 (2007)

    Article  Google Scholar 

  39. J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, M. Kawato, Learning from demonstration and adaptation of biped locomotion. Robot. Auton. Syst. 47(2), 79–91 (2004)

    Article  Google Scholar 

  40. J. Nassour, P. Hénaff, F. Benouezdou, G. Cheng, Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biol. Cybern. 108(3), 291–303 (2014)

    Article  Google Scholar 

  41. N. Ogihara, N. Yamazaki, Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol. Cybern. 84(1), 1–11 (2001)

    Article  Google Scholar 

  42. J. Or, A hybrid CPG–ZMP control system for stable walking of a simulated flexible spine humanoid robot. Neural Netw. 23(3), 452–460 (2010)

    Article  Google Scholar 

  43. C. Paul, Bilateral decoupling in the neural control of biped locomotion, in Proceedings of the Second International Symposium on Adaptive Motion of Animals and Machines, Kyoto, 2003

    Google Scholar 

  44. T. Petric, A. Gams, A.J. Ijspeert, L. Žlajpah, On-line frequency adaptation and movement imitation for rhythmic robotic tasks. Int. J. Robot. Res. 30(14), 1775–1788 (2011)

    Article  Google Scholar 

  45. T. Petrič, A. Gams, M. Tomšič, L. Žlajpah, Control of rhythmic robotic movements through synchronization with human muscle activity, in International Conference on Robotics and Automation (IEEE, 2011)

    Google Scholar 

  46. T. Petric, A. Gams, L. Zlajpah, A. Ude, Online learning of task-specific dynamics for periodic tasks, in International Conference on Intelligent Robots and Systems (IEEE, 2014)

    Google Scholar 

  47. J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, G. Pratt, Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001)

    Article  Google Scholar 

  48. T. Reil, P. Husbands, Evolution of central pattern generators for bipedal walking in a real-time physics environment. Trans. Evol. Comput. 6(2), 159–168 (2002)

    Article  Google Scholar 

  49. L. Righetti, J. Buchli, A.J. Ijspeert, From dynamic Hebbian learning for oscillators to adaptive central pattern generators, in International Symposium on Adaptive Motion in Animals and Machines (Verlag ISLE, Ilmenau, 2005)

    Google Scholar 

  50. L. Righetti, A. Jan Ijspeert, Programmable central pattern generators: an application to biped locomotion control, in International Conference on Robotics and Automation (IEEE, 2006)

    Google Scholar 

  51. G.A. Rummery, M. Niranjan, On-line Q-learning using connectionist systems. Department of Engineering, University of Cambridge, 1994

    Google Scholar 

  52. I.A. Rybak, N.A. Shevtsova, M. Lafreniere-Roula, D.A. McCrea, Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577(2), 617–639 (2006)

    Article  Google Scholar 

  53. C.S. Sherrington, Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Brain Res. Rev. 40(1–2), 28–121 (1910)

    Article  Google Scholar 

  54. M.-a. Sato, Y. Nakamura, S. Ishii, Reinforcement learning for biped locomotion, in International Conference on Artificial Neural Networks (Springer, 2002), pp. 777–782

    Google Scholar 

  55. G. Schöner, A dynamic theory of coordination of discrete movement. Biol. Cybern. 63(4), 257–270 (1990)

    Article  MathSciNet  Google Scholar 

  56. G. Taga, Y. Miyake, Y. Yamaguchi, H. Shimizu, Generation and coordination of bipedal locomotion through global entrainment, in International Symposium on Autonomous Decentralized Systems (IEEE, 1993)

    Google Scholar 

  57. G. Taga, Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D Nonlinear Phenom. 75(1), 190–208 (1994)

    Article  Google Scholar 

  58. G. Taga, A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol. Cybern. 78(1), 9–17 (1998)

    Article  Google Scholar 

  59. G. Taga, Y. Yamaguchi, H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65(3), 147–159 (1991)

    Article  Google Scholar 

  60. N. Van der Noot, A.J. Ijspeert, R. Ronsse, Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model, in International Conference on Robotics and Automation (IEEE, 2015)

    Google Scholar 

  61. B.W. Verdaasdonk, H.F.J.M. Koopman, F.C.T. van der Helm, Energy efficient and robust rhythmic limb movement by central pattern generators. Neural Netw. 19(4), 388–400 (2006)

    Article  Google Scholar 

  62. B.W. Verdaasdonk, H.F.J.M. Koopman, F.C.T. van der Helm, Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control. Biol. Cybern. (1), 49–61 (2009)

    Article  MathSciNet  Google Scholar 

  63. M. Vukobratovic, B. Borovac, Zero-moment point thirty five years of its life. Int. J. Humanoid Rob. 1(01), 157–173 (2004)

    Google Scholar 

  64. T. Wadden, Ö. Ekeberg, A neuro-mechanical model of legged locomotion: single leg control. Biol. Cybern. 79(2), 161–173 (1998)

    Google Scholar 

  65. M.M. Williamson, Robot arm control exploiting natural dynamics. PhD thesis, Citeseer, 1999

    Google Scholar 

  66. R. Zaier, S. Kanda, Piecewise-linear pattern generator and reflex system for humanoid robots, in International Conference on Robotics and Automation (IEEE, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Dzeladini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dzeladini, F., Ait-Bouziad, N., Ijspeert, A. (2019). CPG-Based Control of Humanoid Robot Locomotion. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_49

Download citation

Publish with us

Policies and ethics