Abstract
Many CPG-based locomotion models have a problem known as the tracking error problem, where the mismatch between the CPG driving signal and the state of the robot can cause undesirable behaviours for legged robots. Towards alleviating this problem, we introduce a mechanism that modulates the CPG signal using the robot’s interoceptive information. The key concept is to generate a driving signal that is easier for the robot to follow, yet can drive the locomotion of the robot. This can be done by nudging the CPG signal in the direction of lower tracking error, which can be analytically calculated. Unlike other reactive CPG, the proposed method does not rely on any parametric learning ability to adjust the shape of the signal, making it a unique option for a biological adaptive motor control. Our experiment results show that the proposed method successfully reduces the tracking error. We also show that the CPG signal, regulated by the proposed method, is robust to perturbation and can smoothly return back to the default pattern.
T. Chuthong and B. Leung—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
see also https://youtu.be/uMxDPPg1Q9A.
References
Arena, P.: The central pattern generator: a paradigm for artificial locomotion. Soft Comput. 4(4), 251–266 (2000)
Åström, K.J., Hägglund, T., Astrom, K.J.: Advanced PID Control, vol. 461. ISA-The Instrumentation, Systems, and Automation Society, Research Triangle (2006)
Barikhan, S.S., Wörgötter, F., Manoonpong, P.: Multiple decoupled CPGs with local sensory feedback for adaptive locomotion behaviors of bio-inspired walking robots. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS (LNAI), vol. 8575, pp. 65–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08864-8_7
Bem, T., Cabelguen, J.M., Ekeberg, Ö., Grillner, S.: From swimming to walking: a single basic network for two different behaviors. Biol. Cybern. 88(2), 79–90 (2003)
Buchli, J., Ijspeert, A.J.: Distributed central pattern generator model for robotics application based on phase sensitivity analysis. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, pp. 333–349. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27835-1_25
Buchli, J., Righetti, L., Ijspeert, A.J.: Engineering entrainment and adaptation in limit cycle systems. Biol. Cybern. 95(6), 645 (2006)
Crespi, A., Ijspeert, A.J.: AmphiBot II: an amphibious snake robot that crawls and swims using a central pattern generator. In: Proceedings of the 9th International Conference on Climbing and Walking Robots (CLAWAR 2006), No. CONF, pp. 19–27 (2006)
Ermentrout, G.B., Kopell, N.: Inhibition-produced patterning in chains of coupled nonlinear oscillators. SIAM J. Appl. Math. 54(2), 478–507 (1994)
Homchanthanakul, J., Ngamkajornwiwat, P., Teerakittikul, P., Manoonpong, P.: Neural control with an artificial hormone system for energy-efficient compliant terrain locomotion and adaptation of walking robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), pp. 5475–5482 (2019)
Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)
Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)
Lu, Q., Zhang, Z., Yue, C.: The programmable CPG model based on matsuoka oscillator and its application to robot locomotion. Int. J. Model. Simul. Sci. Comput. 11, 2050018 (2020)
Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: Proceedings of the IEEE International Conference Mechatronics and Automation, vol. 1, pp. 248–253. IEEE (2005)
Nassour, J., Hénaff, P., Benouezdou, F., Cheng, G.: Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biol. Cybern. 108(3), 291–303 (2014)
Okada, M., Nakamura, D., Nakamura, Y.: On-line and hierarchical design methods of dynamics based information processing system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 1, pp. 954–959. IEEE (2003)
Pasemann, F., Hild, M., Zahedi, K.: SO(2)-networks as neural oscillators. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 144–151. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44868-3_19
Pitchai, M., et al.: CPG driven RBF network control with reinforcement learning for gait optimization of a dung beetle-like robot. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11727, pp. 698–710. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30487-4_53
Righetti, L., Buchli, J., Ijspeert, A.J.: Dynamic Hebbian learning in adaptive frequency oscillators. Physica D 216(2), 269–281 (2006)
Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 1585–1590. IEEE (2006)
Rohmer, E., Singh, S.P.N., Freese, M.: CoppeliaSim (formerly V-REP): a versatile and scalable robot simulation framework. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2013). www.coppeliarobotics.com
Thor, M., Manoonpong, P.: Error-based learning mechanism for fast online adaptation in robot motor control. IEEE Trans. Neural Netw. Learn. Syst. 31, 2042–2051 (2019)
Xiong, X., Wörgötter, F., Manoonpong, P.: Adaptive and energy efficient walking in a hexapod robot under neuromechanical control and sensorimotor learning. IEEE Trans. Cybern. 46(11), 2521–2534 (2015)
Acknowledgement
We thank Mathias Thor for his technical support on the MORF robot simulation and acknowledge financial support by the VISTEC research grant on bioinspired robotics [P.M. (PI)] and in part by the NUAA Research Fund [P.M. (PI), P.N.].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chuthong, T., Leung, B., Tiraborisute, K., Ngamkajornwiwat, P., Manoonpong, P., Dilokthanakul, N. (2020). Dynamical State Forcing on Central Pattern Generators for Efficient Robot Locomotion Control. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12533. Springer, Cham. https://doi.org/10.1007/978-3-030-63833-7_67
Download citation
DOI: https://doi.org/10.1007/978-3-030-63833-7_67
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63832-0
Online ISBN: 978-3-030-63833-7
eBook Packages: Computer ScienceComputer Science (R0)