Abstract
Considerable attention has been paid to the development of stable walking robots. Indeed, biped locomotion becomes a broadcast area where various research topics such as artificial intelligence, control theory and neuroscience cope to enhance the abilities of the robots. In this paper, Central Pattern Generator (CPG) which are neural circuits that generates oscillations for rhythmic patterns are used to control the humanoid. The choice of using a CPG as a motion generator is motivated by the naturality of the generated pattern. Moreover, CPG offers the possibility to control the gait speed ensuring an easy modulation of the walking speed. Here, the Zero Moment point is used to measure the stability of the humanoid while walking. Thus, in this paper, a humanoid robot’s walking model is presented with a strong emphasis on stability and representativity of actual human walking. Furthermore, the methodological considerations in the implementation of a CPG controller for a humanoid robot application are also presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huan TT, Van Kien C, Anh HPH, Nam NT (2018) Adaptive gait generation for humanoid robot using evolutionary neural model optimized with modified differential evolution technique. Neurocomputing 320:112–120
Sabaapour MR, Hairi Yazdi MR, Beigzadeh B (2016) Passive dynamic turning in 3D biped locomotion: an extension to passive dynamic walking. Adv Robot 30:218–231
Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K et al (2003) Biped walking pattern generation by using preview control of zero-moment point. In: 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422), vol 2, pp 1620–1626
Harada K, Kajita S, Kaneko K, Hirukawa H (2003) ZMP analysis for arm/leg coordination. In: Proceedings 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Cat. No.03CH37453), vol 1, pp 75–81
Kajita S, Matsumoto O, Saigo M (2001) Real-time 3D walking pattern generation for a biped robot with telescopic legs. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No.01CH37164), vol 3, pp 2299–2306
Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52:367–376
Lee S, Park I-W (2016) Mechanical and electrical design of a biped humanoid which has multiple motors on each lower body joint. Intell Serv Robot 9:49–61
Moro FL, Sentis L, Park J, Atkeson CG, Gienger M, Goswami A et al (2017) Whole-Body Control [TC Spotlight]. IEEE Robot Autom Mag 24:12–14
Yahmedi ASA, Sayari MA (2014) Efficient walking of a simple biped with a torso. 2nd Middle East conference on biomedical engineering, p 382–384
VukobratoviĆ M, Borovac B (2004) Zero-moment point—thirty five years of its life. Int J Humanoid Robot 01:157–173
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sayari, M.A., Masmoudi, N., Zaier, R. (2020). Bio-Inspired CPG Based Locomotion for Humanoid Robot Application. In: Aifaoui, N., et al. Design and Modeling of Mechanical Systems - IV. CMSM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-27146-6_98
Download citation
DOI: https://doi.org/10.1007/978-3-030-27146-6_98
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27145-9
Online ISBN: 978-3-030-27146-6
eBook Packages: EngineeringEngineering (R0)