Abstract
We introduce a system that provides explanations in Natural Language for individual clusters of RDF resources, where clusters are obtained using an external clustering tool. Our system is based on the theory of (Least) Common Subsumers (CS) in RDF. We propose an optimized algorithm for computing a CS, which allows us to compute the CS for up to 80 RDF resources (each with its own RDF-graph of linked data). We then generate a Natural Language sentence to describe each cluster. A unique aspect of our explanations is the use of relative sentences, including nested ones, to represent blank nodes in an RDF-path. We demonstrate the usefulness of our tool by describing the resulting clusters of a real, publicly available, dataset on Public Procurements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Data Availability Statement
Data publicly available at https://tbfy.github.io/data/.
Notes
- 1.
The same conclusion was recently reached [1] using cycles instead of trees.
- 2.
A lean graph G [17] is an RDF-graph which is \(\subseteq \)-minimal with respect to all other RDF-graphs logically equivalent to G.
- 3.
Average execution time for running Algorithm 1 on 80 randomly selected resources—machine equipped with an Intel i7 processor at 3.60 GHz and 32 GB RAM.
- 4.
- 5.
- 6.
The full Knowledge Graph is downloadable at https://tbfy.github.io/data/.
References
Amendola, G., Manna, M., Ricioppo, A.: Characterizing nexus of similarity within knowledge bases: a logic-based framework and its computational complexity aspects. https://arxiv.org/pdf/2303.10714.pdf
Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: IJCAI, vol. 99, pp. 96–101 (1999)
Bae, J., Helldin, T., Riveiro, M., Nowaczyk, S., Bouguelia, M.R., Falkman, G.: Interactive clustering: a comprehensive review. ACM Comput. Surv. 53(1) (2020)
Bandyapadhyay, S., Fomin, F.V., Golovach, P.A., Lochet, W., Purohit, N., Simonov, K.: How to find a good explanation for clustering? Artif. Intell. 322 (2023)
Bouayad-Agha, N., Casamayor, G., Wanner, L.: Natural language generation in the context of the semantic web. Semant. Web 5(6), 493–513 (2014)
Colucci, S., Donini, F., Giannini, S., Di Sciascio, E.: Defining and computing least common subsumers in RDF. Web Semant. Sci. Serv. Agents World Wide Web 39, 62–80 (2016)
Colucci, S., Donini, F.M., Di Sciascio, E.: Common subsumbers in RDF. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249, pp. 348–359. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03524-6_30
Colucci, S., Donini, F.M., Di Sciascio, E.: On the relevance of explanation for RDF resources similarity. In: Babkin, E., Barjis, J., Malyzhenkov, P., Merunka, V., Molhanec, M. (eds.) MOBA 2023. LNBIP, vol. 488, pp. 96–107. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45010-5_8
Colucci, S., Giannini, S., Donini, F.M., Di Sciascio, E.: A deductive approach to the identification and description of clusters in linked open data. In: Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014). IOS Press (2014)
Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation: core tasks, applications and evaluation. J. Artif. Int. Res. 61(1), 65–170 (2018)
Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC (2009)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc., Upper Saddle River (1988)
Li, J., et al.: Neural entity summarization with joint encoding and weak supervision. In: Proceedings of IJCAI-2020, pp. 1644–1650. ijcai.org (2020)
Michalski, R.S.: Knowledge acquisition through conceptual clustering: a theoretical framework and an algorithm for partitioning data into conjunctive concepts. Int. J. Policy Anal. Inf. Syst. 4, 219–244 (1980)
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)
Moshkovitz, M., Dasgupta, S., Rashtchian, C., Frost, N.: Explainable k-means and k-medians clustering. In: Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 7055–7065. PMLR (2020)
Patel-Schneider, P., Arndt, D., Haudebourg, T.: RDF 1.2 semantics, W3C recommendation (2023). https://www.w3.org/TR/rdf12-semantics/
Pérez-Suárez, A., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A review of conceptual clustering algorithms. Art. Intell. Rev. 52(2), 1267–1296 (2019)
Pichler, R., Polleres, A., Skritek, S., Woltran, S.: Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries. Semant. Web 4(4), 351–393 (2013)
Ruta, M., Colucci, S., Scioscia, F., Di Sciascio, E., Donini, F.M.: Finding commonalities in RFID semantic streams. Procedia Comput. Sci. 5, 857–864 (2011)
Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)
Soylu, A., et al.: TheyBuyForYou platform and knowledge graph: expanding horizons in public procurement with open linked data. Semant. Web 13(2) (2022)
Soylu, A., et al.: Towards an ontology for public procurement based on the open contracting data standard. In: Pappas, I.O., Mikalef, P., Dwivedi, Y.K., Jaccheri, L., Krogstie, J., Mäntymäki, M. (eds.) I3E 2019. LNCS, vol. 11701, pp. 230–237. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29374-1_19
Vougiouklis, P., et al.: Neural Wikipedian: generating textual summaries from knowledge base triples. J. Web Semant. 52–53, 1–15 (2018)
Acknowledgements
We acknowledge support by project “LIFE: the itaLian system wIde Frailty nEtwork” founded by Ministry of Health (CUP D93C22000640001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Colucci, S., Donini, F.M., Di Sciascio, E. (2024). Explaining Commonalities of Clusters of RDF Resources in Natural Language. In: Appice, A., Azzag, H., Hacid, MS., Hadjali, A., Ras, Z. (eds) Foundations of Intelligent Systems. ISMIS 2024. Lecture Notes in Computer Science(), vol 14670. Springer, Cham. https://doi.org/10.1007/978-3-031-62700-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-62700-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62699-9
Online ISBN: 978-3-031-62700-2
eBook Packages: Computer ScienceComputer Science (R0)