Skip to main content

On the Relevance of Explanation for RDF Resources Similarity

  • Conference paper
  • First Online:
Model-Driven Organizational and Business Agility (MOBA 2023)

Abstract

Artificial Intelligence (AI) has been shown to productively affect organizational decision making, in terms of returned economic value. In particular, agile business may significantly benefit from the ability of AI systems to constantly pursue contextual knowledge awareness. Undoubtedly, a key added value of such systems is the ability to explain results. In fact, users are more inclined to trust and feel the accountability of systems, when the output is returned together with a human-readable explanation. Nevertheless, some of the information in an explanation might be irrelevant to users—despite its truthfulness. This paper discusses the relevance of explanation for resources similarity, provided by AI systems. In particular, the analysis focuses on one system based on Large Language Models (LLMs)—namely ChatGPT— and on one logic-based tool relying on the computation of the Least Common Subsumer in the Resource Description Framework (RDF). This discussion reveals the need for a formal distinction between relevant and irrelevant information, that we try to answer with a definition of relevance amenable to implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://chat.openai.com/.

  2. 2.

    Queried on December, 28th 2022.

  3. 3.

    https://bioportal.bioontology.org/.

  4. 4.

    The implementation at https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html has been used.

  5. 5.

    https://bioportal.bioontology.org/ontologies.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)

    Google Scholar 

  2. Borlund, P.: The concept of relevance in IR. J. Am. Soc. Inf. Sci. Technol. 54(10), 913–925 (2003). https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.10286

  3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  4. Colucci, S., Donini, F., Giannini, S., Di Sciascio, E.: Defining and computing least common subsumers in RDF. Web Semant. Sci. Serv. Agents World Wide Web 39, 62–80 (2016)

    Article  Google Scholar 

  5. Colucci, S., Donini, F.M., Iurilli, N., Di Sciascio, E.: A business intelligence tool for explaining similarity. In: Babkin, E., Barjis, J., Malyzhenkov, P., Merunka, V. (eds.) Model-Driven Organizational and Business Agility - Second International Workshop, MOBA 2022, Leuven, Belgium, 6–7 June 2022, Revised Selected Papers. Lecture Notes in Business Information Processing, vol. 457, pp. 50–64. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17728-6_5

  6. Colucci, S., Donini, F.M., Di Sciascio, E.: Logical comparison over RDF resources in bio-informatics. J. Biomed. Informatics 76, 87–101 (2017). https://doi.org/10.1016/j.jbi.2017.11.004

  7. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: Semantic-based skill management for automated task assignment and courseware composition. J. Univers. Comput. Sci. 13(9), 1184–1212 (2007). https://doi.org/10.3217/jucs-013-09-1184

  8. Colucci, S., Tinelli, E., Di Sciascio, E., Donini, F.M.: Automating competence management through non-standard reasoning. Eng. Appl. Artif. Intell. 24(8), 1368–1384 (2011). https://doi.org/10.1016/j.engappai.2011.05.015

  9. Cooper, M.C., Marques-Silva, J.: Tractability of explaining classifier decisions. Artif. Intell. 316, 103841 (2023). https://www.sciencedirect.com/science/article/pii/S0004370222001813

  10. Enholm, I.M., Papagiannidis, E., Mikalef, P., Krogstie, J.: Artificial intelligence and business value: a literature review. Inf. Syst. Front. 24(5), 1709–1734 (2022)

    Article  Google Scholar 

  11. Hayes, P., Patel-Schneider, P.F.: RDF 1.1 semantics, W3C recommendation (2014). https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

  12. Ignatiev, A.: Towards trustable explainable AI. In: IJCAI, pp. 5154–5158 (2020)

    Google Scholar 

  13. Jin, X., Han, J.: K-Means Clustering, pp. 563–564. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8_425

  14. Lakemeyer, G.: Relevance from an epistemic perspective. Artif. Intell. 97(1–2), 137–167 (1997). https://doi.org/10.1016/S0004-3702(97)00038-6

  15. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003). https://doi.org/10.1613/jair.1113

  16. Levy, A.Y., Fikes, R., Sagiv, Y.: Speeding up inferences using relevance reasoning: a formalism and algorithms. Artif. Intell. 97(1–2), 83–136 (1997). https://doi.org/10.1016/S0004-3702(97)00049-0

  17. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://www.sciencedirect.com/science/article/pii/S0004370218305988

  18. OpenAI: ChatGPT: optimizing language models for dialogue. https://web.archive.org/web/20221130180912/openai.com/blog/chatgpt/. Accessed 18 Apr 2023

  19. Schneider, J., Abraham, R., Meske, C., Brocke, J.V.: Artificial intelligence governance for businesses. Inf. Syst. Manag. 1–21 (2022)

    Google Scholar 

  20. Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. Intell. Syst. IEEE 21(3), 96–101 (2006)

    Article  Google Scholar 

  21. Soylu, A., et al.: TheyBuyForYou platform and knowledge graph: expanding horizons in public procurement with open linked data. Semant. Web 13(2), 265–291 (2022)

    Google Scholar 

  22. Soylu, A., et al.: Towards an ontology for public procurement based on the open contracting data standard. In: Pappas, I.O., et al. (eds.) I3E 2019. LNCS, vol. 11701, pp. 230–237. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29374-1_19

  23. Tinelli, E., Cascone, A., Ruta, M., Di Noia, T., Di Sciascio, E., Donini, F.M.: I.M.P.A.K.T.: an innovative semantic-based skill management system exploiting standard SQL. In: Cordeiro, J., Filipe, J. (eds.) ICEIS 2009 - Proceedings of the 11th International Conference on Enterprise Information Systems, Volume AIDSS, Milan, Italy, 6–10 May 2009, pp. 224–229 (2009)

    Google Scholar 

  24. Trunk, A., Birkel, H., Hartmann, E.: On the current state of combining human and artificial intelligence for strategic organizational decision making. Bus. Res. 13(3), 875–919 (2020)

    Article  Google Scholar 

  25. Van Rijsbergen, C.: Information Retrieval (2nd edn). Butterworth-Heinemann, Newton (1979)

    Google Scholar 

  26. Van Rijsbergen, C.: Information retrieval: theory and practice. In: Proceedings of the joint IBM/University of Newcastle Upon Tyne Seminar on Data Base Systems, vol. 79 (1979)

    Google Scholar 

Download references

Acknowledgements

Projects Regione Lazio-DTC/“SanLo” (CUP F85F21001090003) and Ministero dello Sviluppo Ecnoncomico/“Casa delle Tecnologie Emergenti dell’area metropolitana di Bari: Bari Open Innovation Hub” (CUP J99J19000300003) partially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Colucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colucci, S., Donini, F.M., Di Sciascio, E. (2023). On the Relevance of Explanation for RDF Resources Similarity. In: Babkin, E., Barjis, J., Malyzhenkov, P., Merunka, V., Molhanec, M. (eds) Model-Driven Organizational and Business Agility. MOBA 2023. Lecture Notes in Business Information Processing, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-031-45010-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45010-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45009-9

  • Online ISBN: 978-3-031-45010-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics