Abstract
The vision of the Semantic Web is to get information with a defined meaning in a way that computers and people can work collaboratively. In this sense, the RDF model provides such a definition by linking and representing resources and descriptions through defined schemes and vocabularies. However, much of the information able to be represented is contained within plain text, which results in an unfeasible task by humans to annotate large scale data sources such as the Web. Therefore, this paper presents a strategy for the extraction and representation of RDF statements from text. The idea is to provide an architecture that receives sentences and returns triples with elements linked to resources and vocabularies of the Semantic Web. The results demonstrate the feasibility of representing RDF statements from text through an implementation following the proposed strategy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An ontology defines the concepts, terms, classes, taxonomies, and rules of a domain [11].
- 2.
In this context, knowledge elements refer to Conceptual Knowledge [22] in terms of things or concepts and the way they are related to each other with the support of an ontology.
- 3.
https://www.w3.org/TR/sparql11-overview/. All URLs in this paper were last accessed on 2019/04/15.
- 4.
Different to formatted text, plain text does not contain any style information or graphical objects and refers to only readable characters.
- 5.
Semantic roles identify the participants in an event guided by a verb and its underlying relationship [13].
- 6.
FOX framework. http://aksw.org/Projects/FOX.html.
- 7.
- 8.
- 9.
WordNet is a lexical database for English http://wordnet.princeton.edu.
- 10.
From a First Order Logic perspective, the predicate of a sentence corresponds to the main verb and any auxiliaries surrounding it.
- 11.
Although the architecture only admits plain text as input data, there are several types of data that could be considered such as structured data (e.g., databases, tables), images, or raw data (e.g., data from sensors).
- 12.
In this work, we indistinctly refer to named entities as only entities.
- 13.
- 14.
This process is often supported by the Semantic Role Labeling task, which helps to determine the role or action performed by an entity within a statement.
- 15.
Stanford CoreNLP models https://stanfordnlp.github.io/CoreNLP/.
- 16.
MatePlus https://github.com/microth/mateplus.
- 17.
Data models downloaded from https://code.google.com/archive/p/mate-tools/downloads.
- 18.
- 19.
Jena https://jena.apache.org.
- 20.
- 21.
- 22.
- 23.
The LonelyPlanet dataset was originally downloaded by Martin Kavalec from the site http://www.lonelyplanet.com/destinations.
- 24.
References
Antoniou, G., Groth, P.T., van Harmelen, F., Hoekstra, R.: A Semantic Web Primer, 3rd edn. MIT Press, Cambridge (2012)
Auer, S., Bryl, V., Tramp, S. (eds.): Linked Open Data - Creating Knowledge Out of Interlinked Data - Results of the LOD2 Project. LNCS, vol. 8661. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-09846-3
Auer, S., Lehmann, J., Ngonga Ngomo, A.-C., Zaveri, A.: Introduction to linked data and its lifecycle on the web. In: Rudolph, S., Gottlob, G., Horrocks, I., van Harmelen, F. (eds.) Reasoning Web 2013. LNCS, vol. 8067, pp. 1–90. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39784-4_1
Augenstein, I., Maynard, D., Ciravegna, F.: Distantly supervised web relation extraction for knowledge base population. Semant. Web 7(4), 335–349 (2016). https://doi.org/10.3233/SW-150180
Augenstein, I., Padó, S., Rudolph, S.: LODifier: generating linked data from unstructured text. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 210–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_21
Chabchoub, M., Gagnon, M., Zouaq, A.: Collective disambiguation and semantic annotation for entity linking and typing. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, pp. 33–47. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-46565-4_3
Cimiano, P.: Ontology Learning and Population from Text - Algorithms. Evaluation and Applications. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-39252-3
Del Corro, L., Gemulla, R.: Clausie: clause-based open information extraction. In: International Conference on World Wide Web, pp. 355–366. ACM (2013). https://doi.org/10.1145/2488388.2488420
Dutta, A., Meilicke, C., Stuckenschmidt, H.: Enriching structured knowledge with open information. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) World Wide Web Conference (WWW), pp. 267–277. ACM (2015)
Exner, P., Nugues, P.: Entity extraction: from unstructured text to DBpedia RDF triples. In: The Web of Linked Entities Workshop (WoLE 2012), pp. 58–69. CEUR-WS (2012)
Fensel, D., et al.: Enabling Semantic Web Services. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-34520-6
Gangemi, A., Presutti, V., Recupero, D.R., Nuzzolese, A.G., Draicchio, F., Mongiovì, M.: Semantic web machine reading with FRED. Semant. Web 8(6), 873–893 (2017). https://doi.org/10.3233/SW-160240
Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Comput. Linguist. 28(3), 245–288 (2002). https://doi.org/10.1162/089120102760275983
Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, San Rafael (2011). https://doi.org/10.2200/S00334ED1V01Y201102WBE001
Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with wikidata? In: Liebig, T., Fokoue, A. (eds.) International Workshop on Scalable Semantic Web Knowledge Base Systems Co-located with ISWC, pp. 32–47. CEUR-WS.org (2015)
Waitelonis, J., Exeler, C., Sack, H.: Linked data enabled generalized vector space model to improve document retrieval. In: NLP & DBpedia Workshop in Conjunction with ISWC 2015. CEUR (2015)
Kertkeidkachorn, N., Ichise, R.: An automatic knowledge graph creation framework from natural language text. IEICE Trans. 101(D(1)), 90–98 (2018). https://doi.org/10.1587/transinf.2017SWP0006
Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Annual Meeting of the Association for Computational Linguistics (ACL), pp. 55–60 (2014)
Martinez-Rodriguez, J.L., Hernandez, J., Lopez-Arevalo, I., Rios-Alvarado, A.B.: A strategy for the integration of named entity extraction and linking results. In: Proceedings of the 3rd International Workshop on Semantic Web 2018 Co-located with 15th International Congress on Information (INFO 2018), 7 March 2018, Havana, Cuba, pp. 13–20. CEUR-WS.org (2018)
Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I.: Information extraction meets the semantic web: a survey. Semant. Web J. (2018, to appear)
Milton, N.R.: Knowledge Acquisition in Practice: A Step-by-Step Guide. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-84628-861-6
Pinto, A.M., Oliveira, H.G., Alves, A.O.: Comparing the performance of different NLP toolkits in formal and social media text. In: 5th Symposium on Languages, Applications and Technologies, SLATE, pp. 3:1–3:16 (2016)
Randolph, J.J.: Free-marginal multirater kappa (multirater k [free]): An alternative to fleiss’ fixed-marginal multirater kappa. In: Joensuu Learning and Instruction Symposium (2005)
Rusu, D., Fortuna, B., Mladenic, D.: Automatically annotating text with linked open data. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M. (eds.) WWW2011 Workshop on Linked Data on the Web. CEUR-WS.org (2011)
Unger, C., Freitas, A., Cimiano, P.: An introduction to question answering over linked data. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 100–140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10587-1_2
Acknowledgments
This work was funded in part by the Fondo SEP-Cinvestav, Project No. 229. We would like to thank the reviewers for their comments on this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Martinez-Rodriguez, J.L., Lopez-Arevalo, I., Rios-Alvarado, A.B., Hernandez, J., Aldana-Bobadilla, E. (2019). Extraction of RDF Statements from Text. In: Villazón-Terrazas, B., Hidalgo-Delgado, Y. (eds) Knowledge Graphs and Semantic Web. KGSWC 2019. Communications in Computer and Information Science, vol 1029. Springer, Cham. https://doi.org/10.1007/978-3-030-21395-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-21395-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21394-7
Online ISBN: 978-3-030-21395-4
eBook Packages: Computer ScienceComputer Science (R0)