YOLOv11全网最新创新点改进系列:YOLOv11融合RepLKNet-基于Swin架构的超大核网络,大 kernel 模型不但有效感受野更大而且更像人类,精度提升!!!
所有改进代码均经过实验测试跑通!截止发稿时YOLOv11已改进40+!自己排列组合2-4种后,考虑位置不同后可排列组合上千万种!改进不重样!!专注AI学术,关注B站up主:Ai学术叫叫兽!
购买相关资料后畅享一对一答疑!
YOLOv11全网最新创新点改进系列:YOLOv11融合RepLKNet-基于Swin架构的超大核网络,大 kernel 模型不但有效感受野更大而且更像人类,精度提升!!!
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
自从VGG提出以后,各种CNN网络层出不穷,但是他们都遵循了VGG的设计思想,通过多个小卷积核叠加来得到大的感受野同时保证较少的参数量(2各3x3的卷积核感受野和5x5的卷积核感受野相同,但是参数18<25)。随着ViT逐渐在各类视觉任务种拿到SOTA的表现,CNN似乎有点后继无力。RepLKNet打破了这种现象,提出使用在CNN网络中使用大的卷积核,RepLKNet在各类视觉任务中获得了SOTA表现。
YOLOv11全网最新创新点改进系列:YOLOv11融合RepLKNet-基于Swin架构的超大核网络,大 kernel 模型不但有效感受野更大而且更像人类,精度嘎嘎提升,精度提升效果拉满!!!
- YOLOv11全网最新创新点改进系列:YOLOv11融合RepLKNet-基于Swin架构的超大核网络,大 kernel 模型不但有效感受野更大而且更像人类,精度提升!!!
- 所有改进代码均经过实验测试跑通!截止发稿时YOLOv11已改进40+!自己排列组合2-4种后,考虑位置不同后可排列组合上千万种!改进不重样!!专注AI学术,关注B站up主:Ai学术叫叫兽!
- **购买相关资料后畅享一对一答疑**!
- YOLOv11全网最新创新点改进系列:YOLOv11融合RepLKNet-基于Swin架构的超大核网络,大 kernel 模型不但有效感受野更大而且更像人类,精度提升!!!
- 一、RepLKNet概述
- 二、YOLOv8+RepLKNet改进方法
- 三、验证是否成功即可
- 四、写在最后
一、RepLKNet概述
1.1 概述
RepLKNet的作者受到了vision transformers (ViT) 最新进展的启发,提出了31×31的超大核模型,与小核 CNN 相比,大核 CNN 具有更大的有效感受野和更高的形状偏差而不是纹理偏差。借鉴 Swin Transformer 的宏观架构,提出了一种架构 RepLKNet。在 ImageNet 上获得 87.8% 的 top-1 准确率,在 ADE20K 上获得 56.0% mIoU,这在具有相似模型大小的最先进技术中非常具有竞争力。
作者在卷积神经网络中引入了大尺寸的深度可分离卷积核做实验,发现如下几点使用大卷积核的指导:
(1)大的卷积核计算也可以很有效率;
(2)残差连接结构对大核卷积网络非常重要;
(3)使用小卷积核重参数化来补优化问题;
(4)对比ImageNet分类任务,在下游任务上大卷积核网络表现更好;
(5)即使特征图很小,使用大卷积核也会很有效。
其网络结构图,如下图所示:
1.2 贡献
1.2.1 大卷积有更大的感受野
从下图可以看出,ResNet101核ResNet152感受野几乎相同,而RepLKNet可以明显看到随着卷积核增加,感受野增大。
1.2.2 大卷积能够学到更多的形状信息
人类视觉对图片进行分类更关注于物体的形状,而卷积网络更多学习到图片的纹理信息,下图对比了几种网络在16种物体上学习到的形状信息的比例,可以看出随着卷积核增加,网络能够学习到更多的形状信息
详细的信息,去看原文吧!加油,家人们遥遥领先了!
二、YOLOv8+RepLKNet改进方法
网络修改三步曲已在往期视频中不断重复,在此不再进行大篇幅的赘述。
详细的改进方法以及流程可以关注我的B站:AI学术叫叫兽
链接在此!
2.1 修改YAML文件
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
2.2 新建RepLKNet.py文件
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
2.3 修改tasks.py
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
三、验证是否成功即可
执行命令
python train.py
大核卷积模型,训练起来也是与众不同!点击链接,看一下训练速度对比效果吧!!!
改完收工!
关注B站:AI学术叫叫兽
从此走上科研快速路
遥遥领先同行!!!!
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
四、写在最后
学术因方向、个人实验和写作能力以及具体创新内容的不同而无法做到一通百通,所以本文作者即B站Up主:Ai学术叫叫兽
在所有B站资料中留下联系方式以便在科研之余为家人们答疑解惑,本up主获得过国奖,发表多篇SCI,擅长目标检测领域,拥有多项竞赛经历,拥有软件著作权,核心期刊等经历。因为经历过所以更懂小白的痛苦!因为经历过所以更具有指向性的指导!
祝所有科研工作者都能够在自己的领域上更上一层楼!!!