SiamRPN

一、网络框架

在这里插入图片描述
第一,与SiamFC相同,模板图像和搜索图像经过AlexNet骨干网(Siamese network)提取特征。第二,之后送入region proposal network 进行分类回归。由于SiamRPN是基于anchor的方法,因此图中分类分支和回归分支都有upchannel这一步操作。模板图像的特征与搜索图像的特征互相关后,得到对应的分类得分,回归偏移量。

二、tracking流程

在这里插入图片描述
把第一帧的模板图像送入骨干网提取特征,后续帧(搜索图像)经过提取特征步骤后都与第一帧的特征进行互相关,得到对应的分类得分,回归偏移量。之后根据分类得分和回归偏移量计算目标的位置,因为anchor设置的是5,因此可以得到多个位置,利用NMS(非极大抑制)选取最贴切的一个。

总结

SiamRPN对边界框进行预测,定位精度更高。 SiamRPN不进行multi-scale test, 速度更快。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值