- 博客(19)
- 收藏
- 关注
原创 MMsegmentation与MMdeploy简单使用
最近涉及到了图像分割的任务,于是拿来写下博客加深下使用。MMsegmentation与MMdeploy的环境配置暂不做讲解,在官网和其他博客中有很多说明。MMdeploy主要是把pt转为 onnx_int8的情况。
2024-08-28 17:19:32
1163
原创 Linux下Vision Mamba环境配置+多CUDA版本切换
Linux 下 Vision Mamba的环境配置。笔者在linux下选用CUDA11.8版本,也比较推荐读者使用此版本,方便后续环境配置。
2024-05-19 22:00:00
4049
8
原创 Vision Mamba论文阅读(主干网络)
简单看看,文章介绍了Vim模型,这是一种新的通用视觉基础模型,它利用双向Mamba块(bidirectional Mamba blocks (Vim))和位置嵌入 (position embeddings)来处理图像序列,并在ImageNet分类、COCO对象检测和ADE20K语义分割任务上取得了比现有的视觉Transformer模型(如DeiT)更好的性能。指出了Mamba时间复杂度与序列长度是线性的。而Transformer的时间复杂度是与序列长度乘二次方关系。
2024-05-18 22:00:00
5130
6
原创 单目深度估计---Depth Anything论文详解
论文题目:Depth Anything: Unleashing the Power of Large-Scale—— 任何深度:释放大规模无标记数据的力量(注意论文名字,因为后续的很多工作都是在未标注数据上做的。作者认为Depth Anything是一种用于稳健单目深度估计的非常实用的解决方案。在不追求新颖的技术模块的情况下,作者目标建立一个简单而强大的基础模型(而且是Zero-shot)。为此,作者通过设计一个数据引擎来收集并自动标注大规模未标记数据(∼62M),从而扩大数据覆盖范围,来能够减少泛化误差。
2024-03-30 16:10:17
14207
29
原创 BEV感知---BevFormer详解
论文名字其中关键词是Spatiotemporal 时空的 , 分开即 spatia 空间的l ,temporal 时间的。可见本论文在BEV感知上引入了时间和空间的因素。相比之前的BEV算法来说,这是比较有创新的一点。具体的,下图所示,上面的分支进行空间特征(多视角图像特征)注意力(spatial cross-attention)。下面的分支进行时间特征注意力(temporal self-attention),可以看到作者这里把前一时刻(t-1时刻)的BEV特征当作是时间特征。
2024-03-25 15:50:23
6933
原创 BEV感知---BevFusion详解
一种非常经典的多模态融合感知方案叫 BEVFusion。这是一种用于多任务多传感器 3D 感知的高效通用框架。BEVFusion 将相机和 LiDAR 功能统一在共享 BEV 空间中,完全保留几何和语义信息。相机和点云分支没有明显的主次关系,相互独立,结果上又相辅相成。高效、准确的多传感器感知对于自动驾驶汽车的安全至关重要。BEVFusion 将最先进的多传感器融合模型的计算成本降低了一半,并在小而远的物体以及雨天和夜间条件下实现了大幅精度提高。它为安全、稳健的自动驾驶铺平了道路。
2024-03-21 15:08:26
12422
10
原创 ARTrack论文阅读分享(单目标跟踪)
ARTrack论文阅读及个人分析。本读者对于Decoder(解码器)中的优化点-----解耦的地方还是有点疑惑(作者对此也暂时还没开源)。
2024-02-14 16:19:18
3011
1
原创 BackTrack论文阅读分享(单目标跟踪)
本论文(BackTrack)重新思考了当下更新在线模板的局限性。然后就提出了前/后向轨迹思想,配合两个约束条件,新增更新在线模板的约束条件。并提出了早期拒绝和早期终止来弥补降低的FPS,进一步探讨了不同设置对模型的影响。
2023-12-19 21:48:14
587
原创 FLatten Transformer 线性注意力的改进
论文作者指出当下Linear Attention的2个不足,并提出对应的改进点。使得Linear Attention和Softmax Attention的效果一致,甚至超越。
2023-10-16 21:34:55
2073
2
原创 简述YOLOv8与YOLOv5的区别
yolov7,yoloX相关论文还没细看,yolov8就出来了。太卷了!YOLOv5和YOLOv8的区别。
2023-03-01 11:12:04
26303
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人