jjm2002
这个作者很懒,什么都没留下…
展开
-
Open3D均值和中值滤波
两种滤波方法都会受到k值的影响,这个值需要根据具体应用和点云的特性仔细选择。均值滤波提供了一种平滑处理,适用于去除随机噪声;中值滤波则更适合去除离群点或更极端的噪声,因为中值对极端值不敏感。原创 2024-04-26 18:57:39 · 240 阅读 · 0 评论 -
Open3D最小二乘法拟合平滑点云
这段代码是用于平滑点云的 Python 脚本,使用了 Open3D 库和 Numpy 库。它的主要作用是对每个点云中的点进行最小二乘平面拟合,并将点投影到拟合的平面上,从而减少噪声和不规则性,得到一个更加平滑的点云。如果一个点的邻近点数量小于 3,跳过该点(因为至少3个点才能确定一个平面)。是一个 N x 3 维的 NumPy 数组,包含 N 个点的坐标。选择与最小特征值对应的特征向量作为平面的法向量。,它描述了点云数据在不同维度上的变化。,该点是所有点坐标的平均值。的点云数据为平滑后的点集。原创 2024-04-20 15:42:37 · 415 阅读 · 0 评论 -
Open3D点云直通滤波
点云直通滤波(Passthrough Filtering)是一种常用的点云预处理方法,其目的是从点云数据中裁剪出感兴趣的区域,或者移除不在特定范围内的点。这项技术在点云数据分析、处理和视觉理解中非常有用。:通过移除某些轴(例如,Z轴)上的远距离点,可以减少环境噪声对点云分析的影响。:如果只对点云中的特定区域感兴趣,直通滤波可以用来裁剪出这一区域,使得后续处理更加高效和集中。:通过移除不必要的点,直通滤波可以减少数据量,加快后续处理步骤的计算速度。原创 2024-04-20 12:21:30 · 585 阅读 · 0 评论 -
Open3D实现点云的平移、旋转、缩放
的值决定了点云旋转的幅度。点云将围绕指定轴和原点 (0,0,0) 旋转。: 旋转轴,0 表示 x 轴,1 表示 y 轴,2 表示 z 轴。: 平移轴,0 表示 x 轴,1 表示 y 轴,2 表示 z 轴。的值表示沿着指定轴的平移距离,正值表示正方向,负值表示负方向。这个函数将点云缩小为原来的一半大小,相对于点云的中心进行缩放。每个函数将点云作为输入,并对其应用特定的变换。这个函数旋转点云给定的角度(以度为单位)。这个函数沿着指定轴平移点云。: 需要旋转的点云。: 需要平移的点云。: 需要缩放的点云。原创 2024-04-17 14:34:54 · 768 阅读 · 0 评论 -
Open3D提取点云外轮廓
设置得太小,那么噪声会对曲率计算产生较大影响,可能会导致曲率估计不准确,边界提取也可能包含很多噪声点。:根据这些索引从原始点云中提取边界点,然后创建一个新的点云来保存这些边界点。每个点的曲率并基于曲率值提取边界点。:找到曲率值大于曲率值数组的90百分位数的点的索引(被认为是边界点)。是在计算每个点曲率时所考虑的最近邻点的数量。设置得太大,可能会平滑掉一些重要的几何特征,导致不能准确识别边界点。:计算每个点的曲率。:函数接受两个参数,一个是点云。从点云中提取这些最近邻点的坐标。的函数,旨在计算输入点云。原创 2024-04-17 12:33:59 · 602 阅读 · 0 评论 -
使用open3d分离背景和物体点云(三)
较小的值可能导致许多小聚类和噪声点被错误地分组,而较大的值可能会导致应该分开的聚类被合并。正确设置这个参数需要了解你的数据以及你想要识别的结构的大小。:根据平面点云与物体点云的平均深度来判断哪个是真正的物体。如果平面点云的深度大于物体点云的深度,那么物体点云被认为是实际的物体,否则平面点云被认为是物体。较小的值可能导致过度分割,而较大的值可能导致欠分割。:计算假设为平面的点云和物体点云的平均深度(在这里,代码假设Z轴为深度方向)。函数来分割出包含最多点的聚类(假设为平面)和其他所有点(假设为物体)。原创 2024-04-16 22:56:01 · 227 阅读 · 0 评论 -
Open3D生成规则点云(三)
【代码】Open3D生成规则点云(三)原创 2024-04-12 17:30:29 · 133 阅读 · 0 评论 -
Open3D生成规则点云(二)
编写函数create_square生成正方体 ,注意这个正方体的内部是填充的,不是空心的。编写函数regularTriangularPrism生成正三棱柱面。编写函数create_cone生成圆锥面。编写函数create_sphere生成球面。使用Open3D内置函数生成圆锥面。原创 2024-04-12 16:03:14 · 252 阅读 · 0 评论 -
Open3D生成规则点云(一)
参数可以改变圆柱体的形状、大小和点云的密度。合并点云时,可以通过调整两个点云的相对位置和方向来得到不同的组合效果。参数表示球体的分辨率(生成的点云密度)。生成的球体点云存储在变量。生成的圆柱体点云存储在变量。这段代码中的参数设置会影响生成的点云的形状和密度。参数可以改变球体的大小和点云的密度。最后,将球体和圆柱体的点云合并为一个点云,通过。参数表示圆柱体的分辨率(生成的点云密度),接下来,在生成圆柱体点云时,使用了。首先,在生成球体点云时,使用了。访问点云的坐标数据。访问点云的坐标数据。原创 2024-04-11 19:15:35 · 233 阅读 · 0 评论 -
使用open3d分离背景和物体点云(二)
更高的百分位数会导致更多的点被视为背景,而更低的百分位数可能将部分背景点错误地归类为物体。的设置对结果影响很大,如果设置得太高,可能会包括太多背景点,太低则可能丢失重要的前景点。特征向量对应的特征值表示了点云分布在特征向量方向上的方差大小,Z轴分量最大的特征向量表征了点云的垂直方向。通过点积的阈值(此处设置为点积的25百分位数)来区分背景和物体,小于阈值的点被认为是背景,否则是物体。计算点云中每个点到均值点的向量与上述垂直向量的点积,用于判断点是否属于背景或物体。,它仅包含深度小于阈值的点。原创 2024-04-06 21:53:52 · 580 阅读 · 0 评论 -
使用Python写简单的点云高斯滤波
首先,函数估计每个点的法线,这对于后续的KNN搜索可能有帮助,特别是在进行表面重建时。合适的参数取决于点云的特性和所需的应用。用这些权重和邻居点的位置,计算加权的平均位置,该位置将成为滤波后新点云中对应点的位置。:每个点的邻居数量。这个参数决定了在计算每个点的新位置时考虑的周围点的数量。会给予邻近点更大的权重,更远的点几乎没有影响,这样能更好地保留边缘和细节;这个参数控制高斯权重的分布范围,即邻居点的影响力大小。: 初始化一个同样形状的数组用于存放滤波后的点云数据。: 将滤波后的点赋给新点云的点集。原创 2024-04-05 12:48:25 · 554 阅读 · 0 评论 -
使用Python写简单的点云SUSAN关键点检测
较低的阈值会导致更多的点被选为关键点,而较高的阈值会导致较少的点被选中。总的来说,这些参数的设置应基于点云数据的特性和应用的特定需求进行调整。然而,在某些情况下,由于进程间通信的开销,使用较少的核心可能会更有效率。方法,根据筛选出的索引来创建包含关键点的新PointCloud对象。这个函数是并行计算每个点的关键点响应值的核心。会导致更少的点被认为是相似的,可能会减少关键点的数量。: 输入的点云,Open3D的PointCloud对象。会导致更多的点被认为是相似的,可能会增加关键点的数量。原创 2024-04-05 12:17:37 · 260 阅读 · 0 评论 -
使用Python写简单的点云harris 3D关键点检测
使用列表中的索引从原始点云中选择关键点。返回关键点组成的子点云。原创 2024-04-04 18:21:07 · 273 阅读 · 0 评论 -
点云的Python均值采样
它指定了八叉树的深度,从而控制下采样的粒度。更深的八叉树意味着更细的划分,因此最终的点云会更密集;较浅的八叉树意味着更粗糙的划分,点云会更稀疏。它决定了下采样后点云中点的数量。它决定了在计算每个采样点的均值时要考虑的最近邻点的数量。不同的方法会影响下采样的结果和性能。值则保留更多的局部细节,但可能会导致最终的下采样点云中的噪声增加。根据具体的应用场景和对下采样结果的需求,可以调整。是你想要在下采样后的点云中得到的点数,对象,即需要被下采样的点云数据。参数来得到最佳的下采样效果。这段代码定义了一个函数。原创 2024-04-04 16:44:18 · 366 阅读 · 0 评论 -
使用open3d分离背景和物体点云(一)
RANSAC(随机采样一致性)是一种常用的分割算法,通常用于从点云中分割出最大的平面(如地面、墙壁等)。RANSAC速度相对较快,特别是当点云数据量不是很大时。在物体与背景之间存在明显的平面界限时效果较好,但如果背景复杂或物体表面也较平坦,则可能无法有效分割。DBSCAN(基于密度的空间聚类的噪声应用)是一个无监督的聚类算法,能够根据密度将数据分割成多个子集群。DBSCAN的运行时间主要取决于点云的密度和大小。对于大型点云,DBSCAN可能会比较慢。原创 2024-03-31 16:19:43 · 406 阅读 · 0 评论 -
pyrealsense2获取保存点云
来捕捉深度相机的数据,并将深度数据与彩色数据结合,形成彩色的点云,然后将点云保存为PLY文件。颜色数组的通道顺序可能需要从BGR转换为RGB,并归一化到[0, 1]范围。提取深度帧和彩色帧,如果没有获取到这些帧,打印错误信息。创建一个Open3D点云对象,并设置其顶点和颜色。将点云保存为PLY文件,文件名包含一个递增的编号。)转换为NumPy数组,并重塑为三维数据。首先,设置输出文件夹,如果不存在则创建。:用于保存点云到文件的Open3D函数。:创建一个空的Open3D点云对象。原创 2024-03-23 13:07:14 · 1297 阅读 · 0 评论 -
ICP和GICP配准动态展示
这是源点云的初始变换矩阵,它的质量对于 G-ICP 算法的最终结果有很大影响。: 源点云的初始变换矩阵,它的选择对最终的对齐结果至关重要。: 控制每次迭代后的暂停时间,增加用户观察配准过程的机会,该参数在代码中被注释掉了。: 变换估计方法,这里使用的是点到点的变换估计,适用于没有缩放的刚性变换。: 配准的迭代次数。: 对应点之间的最大距离阈值,用于匹配源点云和目标点云中的对应点。: 对应点之间的最大距离阈值,用于匹配源点云和目标点云中的对应点。为新的变换矩阵,并返回变换后的源点云以及更新后的变换矩阵。原创 2024-03-13 22:19:35 · 738 阅读 · 0 评论 -
点云PLY、PCD、OBJ、TXT文件互相转换
本文的转换只针对点云的顶点信息,它们之间的相互转换关系一共12种。这份代码没有用PCL,不需要配置PCL环境也可以使用。原创 2024-03-08 13:22:02 · 1022 阅读 · 0 评论 -
点云采样方法
这本来是最远点采样,感觉速度有点慢,所以把点云分成几组进行最远点采样,最后合起来,效果肯定没有整体来的好,batch=1就是正常的最远点采样。将点云划分为体素格(Voxel Grid),然后在每个体素格中保留一个代表性的点,其他点被丢弃。随机选择一定数量的点作为采样点,其他点被丢弃。调整了batch=5后。原创 2024-03-01 20:20:56 · 819 阅读 · 0 评论 -
CPD点云配准
你要安装open3d、probreg和cupy。原创 2024-02-29 21:27:50 · 1857 阅读 · 5 评论 -
ICP\FGR\GICP\RANSAC点云配准
较大的值可以允许更大的点对距离,从而提高匹配的鲁棒性,但可能会导致更多的离群点或者不准确的匹配。例如,调整最大对应距离可以控制匹配的严格程度,而初始变换矩阵则可以影响算法的收敛速度和结果的准确性。例如,调整最大对应距离可以控制特征匹配的严格程度,而RANSAC中的采样数量和迭代次数则可以影响算法的收敛速度和结果的准确性。:RANSAC的收敛标准,指定了RANSAC算法迭代的最大次数和收敛的置信度。在这里,使用了基于距离的检查器,可以根据需要添加其他的检查器,比如基于边缘长度的检查器。通常使用默认值即可。原创 2024-02-29 11:49:39 · 1717 阅读 · 0 评论 -
FPFH特征匹配以及ransac粗配准
的球体内搜索其他点。如果点云的密度较大,你可能需要选择较小的半径,以确保只考虑附近的点。如果点云的密度较小,你可能需要选择较大的半径,以确保找到足够的邻近点用于法向量估计。如果点云比较密集,你可能需要较大的值,而在点云比较稀疏的情况下,可以选择较小的值。通常,在计算点云特征时,为了降低计算复杂度,会选择提取一些具有代表性的点作为关键点。该值的设置应根据点云的尺度来调整,确保它适当地覆盖了预期的点云之间的距离。如果设置为True,将考虑源点云到目标点云和目标点云到源点云的匹配,以减少错误匹配。原创 2024-02-28 17:43:14 · 1187 阅读 · 0 评论 -
iss关键点检测以及ICP粗配准
增加此值将导致更严格的过滤,仅保留周围邻居较多的关键点,而减少此值可能会导致保留更多的关键点,即使它们的邻居较少。增加此值可能会导致更多的关键点被保留,但也可能导致关键点密度较低的区域保留过多的关键点。增加此值将导致更大的关键点区域,可能会检测到更多的关键点,但也可能导致关键点之间的冗余。增加此值将导致更多的点被认为是关键点,但也可能会引入更多的噪声或冗余关键点。增加此值将导致更多的点被认为是关键点,但也可能会引入更多的噪声或冗余关键点。:目标点云的关键点,即需要将源点云配准到的点云。原创 2024-02-27 20:39:25 · 1127 阅读 · 0 评论 -
罗德里格斯公式简要介绍
轴角表示是一种描述旋转的方式,它使用一个单位旋转轴 k 和旋转角度 θ 来表示三维空间中的旋转。这个矩阵可以用来作用于任意向量 v,即通过矩阵-向量乘法 Rv 来实现向量 v 绕轴 k 旋转 θ 角度的效果。k * (k ⋅ v) * (1 - cos(θ)):v 在旋转轴方向上的分量,这部分分量在旋转中增强了旋转轴方向的分量。(k × v) * sin(θ):v 在垂直于旋转轴的平面上的分量,绕轴旋转后的分量。v * cos(θ):v 在旋转轴平行方向的分量,在旋转中不会改变。v’ 是旋转后的向量。原创 2024-02-11 17:46:48 · 1286 阅读 · 0 评论