扩展卡尔曼滤波:解锁非线性系统的状态估计密码

目录

  1. 为什么需要扩展卡尔曼滤波,与卡尔曼滤波的区别?

  2. 扩展卡尔曼滤波的三大前提条件

  3. 算法核心

  4. 目标跟踪中的典型应用场景

  5. 下期预告

一、为什么需要扩展卡尔曼滤波,与卡尔曼滤波的区别?

在现实世界的诸多实际应用场景里,系统往往展现出极为复杂的非线性特性。以航空航天领域为例,飞行器在飞行过程中,其运动轨迹受到空气动力学、地球引力、高空大气环境等多种复杂因素的综合影响,导致其运动规律难以借助简单的线性模型予以精确描述。在自动驾驶场景下,车辆的加速、减速、转向操作以及行人的不规则运动等情况,也都无法通过传统的线性系统进行精准分析与处理。并且,传感器采集的数据常常面临噪声干扰、数据缺失、信号畸变等一系列问题。

传统的卡尔曼滤波在处理线性系统时,凭借其简洁高效的算法结构和良好的估计性能,能够精准地对系统状态进行估计。但它严格依赖线性系统假设,即系统的状态转移方程和观测方程均为线性形式,状态变量之间以及状态变量与观测变量之间仅存在线性关系。一旦面对上述非线性、复杂的实际情况,由于其内在算法机制难以对非线性关系进行有效建模和处理,所以无法准确地估计系统状态。

扩展卡尔曼滤波(EKF)正是为解决此类问题而诞生。它创新性地采用将非线性系统通过线性化近似的方式,转化为近似线性系统来进行处理。具体而言,EKF 通过对非线性的状态转移函数和观测函数在当前估计状态附近进行泰勒展开,取一阶线性项来近似原非线性函数,从而将非线性系统问题转化为类似线性系统的形式,进而实现对系统状态的有效估计。相较于卡尔曼滤波,EKF 打破了线性系统的限制,能够处理非线性系统;在算法流程上,针对非线性函数的线性化操作引入了雅可比矩阵的计算,用于描述函数的局部线性近似关系,这是与卡尔曼滤波在算法细节上的显著区别。EKF 的出现,为解决现实中大量存在的非线性系统估计问题提供了强有力的工具,极大地拓展了状态估计技术的应用范围,使相关系统在复杂环境下的状态估计与控制得以实现。

二、扩展卡尔曼滤波的三大前提条件

(一)可线性化假设

尽管系统本身是非线性的,但在一定条件下,可通过泰勒展开等方法将其在某个工作点附近进行线性化近似。例如对于非线性状态转移函数和观测函数,在当前估计状态处进行一阶泰勒展开,使其能够用类似线性系统的方式进行处理。不过,这种线性化近似在系统非线性程度较高时,可能会引入较大误差,影响最终的估计精度。

(二)高斯噪声模型

与卡尔曼滤波类似,扩展卡尔曼滤波假设系统噪声和观测噪声都服从高斯分布。这意味着噪声的概率密度函数呈正态分布,大部分噪声值集中在均值附近,离均值越远,出现的概率越小。这种假设使得我们能够利用高斯分布的数学特性,对噪声进行量化和处理,从而在状态估计过程中考虑噪声的影响。然而,在实际情况中,如果噪声不符合高斯分布,EKF 的性能可能会受到严重影响。

(三)局部马尔可夫性

扩展卡尔曼滤波假定当前状态仅由前一时刻的状态和控制输入决定,与更早的历史状态无关。在实际应用中,这一特性简化了状态转移的计算过程,使得我们在预测当前状态时,只需关注上一时刻的状态信息以及当前的控制输入,而无需考虑整个历史状态序列。但在某些复杂系统中,这种局部马尔可夫性可能并不完全成立,从而对 EKF 的估计效果产生一定限制。

三、算法核心

(一)预测阶段

  1. 状态预测

    利用线性化后的状态转移函数进行状态预测。对于非线性状态转移函数 x k = f ( x k − 1 , u k , w k ) x_k = f(x_{k - 1}, u_k, w_k) xk=f(xk1,uk,wk)

    ,在当前估计状态 x ^ k − 1 \hat{x}_{k - 1} x^k1处线性化后,状态预测公式为 x ^ k ∣ k − 1 = f ( x ^ k − 1 , u k , 0 ) \hat{x}_{k|k - 1}=f(\hat{x}_{k - 1}, u_k, 0) x^kk1=f(x^k1,uk,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温文尔雅透你娘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值