自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 摄像头在自动驾驶中的核心应用:感知算法与技术方案深度解析

摄像头作为自动驾驶的 “视觉中枢”,其价值不仅在于硬件性能,更依赖算法体系的持续创新。基于检测的跟踪技术凭借成熟度支撑了当前主流方案,而端到端算法则代表了未来复杂场景的突破方向。随着二者在轻量化、鲁棒性、多模态融合上的技术迭代,摄像头将在自动驾驶从辅助走向全自主的进程中,扮演愈发关键的角色 —— 不仅是 “眼睛”,更是连接感知与决策的智能桥梁。

2025-04-12 10:20:24 643

原创 伯努利滤波器:单目标存在性不确定场景的最优跟踪方案

目标存在性模糊检测概率不足杂波干扰严重伯努利滤波器基于随机有限集(RFS)理论,创造性地将目标 “存在与否” 的二项分布与状态估计相结合。以无人机监测场景为例,在森林等复杂环境导致传感器检测能力受限的情况下,该算法能有效抑制虚警干扰、提升漏检恢复效率,在低信噪比条件下展现出显著的鲁棒跟踪性能,成为此类挑战性场景中的核心技术方案。

2025-04-11 08:36:14 468

原创 过程噪声与测量噪声:卡尔曼滤波的噪声建模核心

先验与后验结合:初始参数基于传感器手册和动力学知识,再通过实测数据微调维度匹配Q\mathbf{Q}Q的维度与状态向量一致,R\mathbf{R}R的维度与观测向量一致动态适应:复杂场景中使用时变噪声矩阵(如根据目标机动强度实时调整Q\mathbf{Q}Q可视化验证:绘制创新序列(zk−Hxk∣k−1zk−Hxk∣k−1)的均值和方差,确保其接近零均值白噪声正确的噪声建模是卡尔曼滤波与 IMM 算法成功的关键,其核心在于平衡模型预测与传感器观测的信任度。

2025-04-09 07:55:17 1119

原创 自动驾驶传感器三剑客:摄像头、毫米波雷达与激光雷达技术详解

暴雨天摄像头图像模糊隧道内毫米波雷达易受金属反射干扰激光雷达在强光下性能下降多传感器融合通过整合摄像头、毫米波雷达、激光雷达的优势,构建 360° 环境感知体系,成为 L3 级以上自动驾驶的标配方案。

2025-04-08 08:45:50 732

原创 多假设跟踪(MHT):复杂场景下的终极目标追踪方案

多假设跟踪(MHT)通过维护多个可能的关联假设树,成功解决了这些难题,成为复杂场景下的首选方案。

2025-04-07 09:32:58 679

原创 联合概率数据关联(JPDA):复杂多目标跟踪场景的进阶解决方案

多目标跟踪的核心挑战在于**数据关联冲突**:当目标数量增加且存在交叉轨迹、遮挡或密集杂波时,传统单目标跟踪算法(如最近邻算法、概率数据关联算法 PDA)会因以下局限导致性能下降:

2025-04-06 09:07:38 988

原创 概率数据关联(PDA):多目标跟踪的基石算法

1. 为什么需要概率数据关联?2. 核心思想与假设条件3. 算法核心:概率分配与状态更新4. 典型应用场景与优势5. 挑战与改进方向6. 下期预告

2025-04-05 08:45:15 850

原创 粒子滤波(PF):非高斯环境下的鲁棒状态估计

传统卡尔曼滤波家族(EKF/UKF)依赖高斯分布假设和线性化近似,在以下场景中存在固有缺陷:- 非高斯噪声:如突发脉冲噪声、多模态分布噪声- 强非线性系统:如混沌系统、离散跳跃过程- 高维状态空间:如多目标跟踪、图像序列分析

2025-04-04 13:39:13 654

原创 无迹卡尔曼滤波(UKF):非线性系统的高效估计方法

具体而言,UKF 通过选取一组 sigma 点(确定性采样点)来捕获状态分布的均值和协方差,利用非线性函数直接传播这些点,再通过加权统计得到新的均值和协方差。例如,在无人机大角度机动或机器人高维动力学建模中,非线性函数的高阶项会导致线性化误差显著增大,甚至引发滤波发散。在无人机飞行中,非线性的运动学方程(如四元数姿态更新)和传感器噪声(如陀螺仪漂移)会导致 EKF 估计精度下降。尽管无迹卡尔曼滤波在非线性估计中表现出色,但其对高斯噪声的依赖和计算复杂度限制了在非高斯环境中的应用。

2025-04-04 08:47:28 827

原创 扩展卡尔曼滤波(EKF):解锁非线性系统的状态估计密码

目录为什么需要扩展卡尔曼滤波,与卡尔曼滤波的区别?扩展卡尔曼滤波的三大前提条件算法核心目标跟踪中的典型应用场景下期预告。

2025-04-03 15:45:00 1277

原创 卡尔曼滤波从入门到实践:理解目标跟踪的核心算法

卡尔曼滤波通过最优估计理论,创造性地将系统模型预测与传感器观测有机融合。以自动驾驶为例,该算法能将摄像头、激光雷达和 GPS 数据实时融合,实现厘米级轨迹预测,为决策系统争取宝贵的 200ms 反应时间。

2025-04-03 11:20:32 629

多目标跟踪联合概率数据关联C++程序

多目标跟踪联合概率数据关联C++程序 对视频中的多个行人目标进行跟踪

2025-04-12

多目标跟踪概率假设密度C++程序

多目标跟踪概率假设密度C++程序

2025-04-12

目标跟踪 kf+ekf+ukf+pf

目标跟踪 卡尔曼滤波 扩展卡尔曼滤波 无迹卡尔曼滤波 粒子滤波 效果对比

2025-04-06

扩展卡尔曼滤波目标跟踪matlab代码

此 Matlab 代码用扩展卡尔曼滤波(EKF)对目标进行跟踪。状态转移函数为线性,观测函数是非线性。在仿真中生成真实状态和观测值,EKF 通过线性化观测函数的雅可比矩阵进行状态估计,最后绘制真实与估计轨迹对比跟踪效果。

2025-04-05

无迹卡尔曼滤波目标跟踪matlab程序

该Matlab程序演示二维目标跟踪,利用无迹卡尔曼滤波(UKF)处理含噪声的运动模型和观测数据。适合掌握卡尔曼滤波基础的学生、研究人员及工程师。

2025-04-05

卡尔曼滤波运动模型-2

卡尔曼滤波运动模型-2

2025-04-03

卡尔曼滤波误差比较程序

卡尔曼滤波误差比较程序

2025-04-03

卡尔曼滤波计算均方根误差程序

卡尔曼滤波计算均方根误差程序

2025-04-03

卡尔曼滤波计算误差程序

卡尔曼滤波计算误差程序

2025-04-03

卡尔曼滤波可视化结果程序

卡尔曼滤波可视化结果程序

2025-04-03

卡尔曼滤波运动模型程序

卡尔曼滤波运动模型程序

2025-04-03

卡尔曼滤波生成航迹测量程序

卡尔曼滤波生成航迹测量程序

2025-04-03

卡尔曼滤波生成目标真实轨迹程序

卡尔曼滤波生成目标真实轨迹程序

2025-04-03

卡尔曼滤波实现程序预测+更新

卡尔曼滤波实现程序..

2025-04-03

卡尔曼滤波主程序main.m

卡尔曼滤波主程序main.m

2025-04-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除