单目标跟踪论文整理

更新时间:2022.1.21


Siamese系列跟踪网络

可以参考大佬博客

1、Siam FC(CVPR2016)

题目:Fully-Convolutional Siamese Networks for Object Tracking
论文地址:arxivreadpaper

  作为孪生跟踪网络的开山鼻祖,Siam FC将跟踪当做一个配对问题,即把第一帧的目标当做模板,在搜索帧中匹配相似度最高的目标。通过一对孪生特征提取网络分别提取模板帧和搜索帧的特征,再将两个特征进行相似度计算。
Archtecture of Siam FC

2、Siam RPN(CVPR2018)

题目:High Performance Visual Tracking with Siamese Region Proposal
Network
论文地址:CVPRreadpaper

  由于Siam FC的问题在于跟踪框不够灵活,所以Siam RPN便加入了目标检测的RPN结构,让跟踪框更加的准确,并且省去多尺度测试耗费的时间。
Archtecture of Siam RPN

3、Global Track(AAAI2020)

题目:GlobalTrack: A Simple and Strong Baseline for Long-term Tracking
论文地址:AAAIarxivreadpaper
代码地址:https://github.com/huanglianghua/GlobalTrack

  GlobalTrack 算法将目标跟踪与 Faster RCNN 结合,将跟踪任务视为模板引导的全局实例检测问题。
  GlobalTrack 提出了一种查询引导的 RPN,其中的关键思想是使用相关性对特征提取网络中的模板信息进行编码。然后,查询引导的 RCNN 负责完善候选框的分类标签和坐标的预测。
GlobalTrack


Transformer启发

1、Transformer Tracking(CVPR2021)

题目:Transformer Tracking
论文地址:CVPRreadpaper
代码:github
好文解读:博客地址

  最近流行的基于孪生网络的跟踪器主要采用correlation operation的融合方式来考虑模板与搜索区域之间的相似性,但是correlation operation本身是一个局部线性匹配过程,导致语义信息丢失,容易进入局部最优。
  在Transformer的启发下,作者提出了一种新的attention-based的特征融合网络,有效地将模板和搜索区域特征完全结合在一起。
TransT
ECA and CFA

2、Transformer Meets Tracker(CVPR2021)

题目:Transformer Meets Tracker Exploiting Temporal Context for Robust
Visual
论文地址:CVPRreadpaper
代码:github
好文解读:博客地址

  在视频目标跟踪中,连续帧之间存在丰富的时间上下文信息,在现有的跟踪器中已大大忽略了这些上下文信息。所以作者考虑将 Transformer 引入到 Tracking framework 中,借助 Transformer 模块学习视频中的时序信息以辅助跟踪。并在 Siamese tracker 和 DCF tracker 上进行了结合,在多个数据集上都得到了不错的结果。

TransformerMeetTracker

3、Learning Spatio-Temporal Transformer for Visual Tracking(ICCV2021)

题目:Learning Spatio-Temporal Transformer for Visual Tracking
论文地址:CVPRreadpaper
代码:github
好文解读:博客地址

  • 提出了一种新的基于transformer的目标追踪结构,这种结构可以捕捉空间和时间维度的信息。
  • 整个pipline还是比较简单的,不需要调太多超参数
    Framework for spatial-only tracking.
    Framework for spatio-temporal tracking

4、STMTrack(CVPR2021)

题目:STMTrack: Template-free Visual Tracking with Space-time Memory Networks
论文地址:CVPRreadpaper
代码地址:github
视频资料:bilibili

  • 提出了一种端到端的记忆跟踪框架,不仅像siamese network那样高效,也有着和模板更新策略一样强的自适应能力。
  • 提出了与模板更新策略不同的全新方法,为之后的基于时空记忆的方法有一定的启发作用。
  • 提出了一种基于像素级相似度计算的视觉跟踪记忆机制,能生成更精确的bounding-box。
  • 在OTB-2015、TrackingNet、LaSOT和GOT-10K上取得了SOTA的性能,实时37FPS
    STMTrack

### 关于目标跟踪学术论文下载 目标跟踪计算机视觉中的重要研究方向,近年来随着深度学习的发展,该领域取得了显著进步。以下是几篇重要的目标跟踪相关学术论文及其获取方式: #### 目标跟踪 一篇关于目标跟踪的综述性文章已经进行了初步整理[^3],其中包含了多篇经典论文。这些论文可以通过访问各大会议官网(如 CVPR、ECCV 和 ICCV)或者预印本平台 arXiv 获取。 例如,在 2019 至 2020 年期间,极市曾整理过一份包含顶会论文目标跟踪资源合集[^1]。此列表涵盖了多个顶级会议的研究成果,可以直接通过提供的链接进入具体页面并下载 PDF 文件。 #### 多对象跟踪 (MOT) 对于多对象跟踪方面,《MotionTrack: Learning Robust Short-term and Long-term Motions for Multi-Object Tracking》是一篇值得关注的文章。它提出了利用短期和长期运动模式来增强 MOT 性能的方法。同样地,这篇论文也可以从其发表所在期刊或会议网站上找到正式版本;如果暂时无法获得,则可尝试前往 arXiv 查找早期公开版。 另外还有《SQE: a Self Quality Evaluation Metric for Parameters Optimization in Multi-Object Tracking》,由清华大学与旷视联合发布的一篇文章[^5]。文中介绍了一种新的自我质量评估指标用于优化参数设置过程。读者能够经由给出的 URL 地址直达原始文档地址进行查阅。 至于更通用性强且便于对比实验设计的基础框架类工作,《StrongSORT 的动机可以概括如下...》一节提到的内容提供了良好起点[^4]。这类研究成果往往会被广泛引用,并成为后续改进方案的重要参照物之一。 最后提醒一下,当试图寻找特定年份内的某些高质量科研产出时,“导论部分”提及到的那个时间段里所列举出来的那些高水平国际会议上接受投稿的作品集合是非常值得深入挖掘的对象。 ```python import requests def download_paper(url, filename="paper.pdf"): response = requests.get(url) with open(filename, 'wb') as f: f.write(response.content) # Example usage based on provided reference [5] download_paper('https://arxiv.org/pdf/2004.07472', 'SQE_paper.pdf') ``` 上述 Python 脚本展示了如何自动化下载指定链接上的 PDF 文档至本地磁盘保存下来供离线阅读分析之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值