Cursos de AI-Enhanced Yield Management in Semiconductor Production
A IA está transformando o gerenciamento de rendimento na produção de semicondutores, permitindo a análise de dados em tempo real e o uso de algoritmos de aprendizado de máquina para melhorar as taxas de rendimento e minimizar os custos de produção.
Este treinamento ao vivo conduzido por instrutor (no local ou remoto) é destinado a profissionais de nível intermediário que desejam aplicar técnicas de IA para otimizar o gerenciamento de rendimento na fabricação de semicondutores.
No final deste treinamento, os participantes serão capazes de:
- Analisar dados de produção para identificar fatores que afetam as taxas de rendimento.
- Implementar algoritmos de IA para melhorar os processos de gerenciamento de rendimento.
- Otimize os parâmetros de produção para reduzir defeitos e melhorar os rendimentos.
- Integre o gerenciamento de rendimento orientado por IA nos fluxos de trabalho de produção existentes.
Formato do curso
- Palestra e discussão interactiva.
- Muitos exercícios e prática.
- Implementação prática num ambiente de laboratório ao vivo.
Opções de personalização do curso
- Para solicitar uma formação personalizada para este curso, por favor contacte-nos para combinar.
Programa do Curso
Introdução ao rendimento Management na produção de semicondutores
- Visão geral dos conceitos de gestão do rendimento
- Desafios na otimização das taxas de rendimento
- Importância da gestão do rendimento na redução de custos
Data Analysis para Rendimento Management
- Recolha e análise de dados de produção
- Identificação de padrões que afectam as taxas de rendimento
- Utilização de ferramentas estatísticas para otimização do rendimento
Técnicas de IA para otimização do rendimento
- Introdução aos modelos de IA para gestão do rendimento
- Aplicar a aprendizagem automática para prever resultados de rendimento
- Utilizar a IA para identificar as causas principais da perda de rendimento
Implementação de soluções de rendimento baseadas em IA Management
- Integração de ferramentas de IA nos fluxos de trabalho de gestão do rendimento
- Monitorização e ajustes em tempo real com base nas previsões da IA
- Criação de painéis de controlo para visualização da gestão do rendimento
Estudos de casos e aplicações práticas
- Análise de implementações bem-sucedidas de gestão de rendimento com base em IA
- Prática com conjuntos de dados de produção do mundo real
- Aperfeiçoamento de modelos de IA para melhoria contínua do rendimento
Tendências futuras da IA para o rendimento Management
- Tecnologias emergentes de IA na gestão do rendimento
- Preparar-se para os avanços na produção orientada por IA
- Explorar direcções futuras na otimização da gestão do rendimento
Resumo e próximos passos
Requisitos
- Experiência em processos de produção de semicondutores
- Conhecimentos básicos de IA e aprendizagem automática
- Familiaridade com metodologias de controlo de qualidade
Público-alvo
- Engenheiros de controlo da qualidade
- Gestores de produção
- Engenheiros de processos no fabrico de semicondutores
Precisa de ajuda para escolher o curso certo?
Cursos de AI-Enhanced Yield Management in Semiconductor Production - Enquiry
Declaração de Clientes (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Curso - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life™
Curso - Kubeflow
Próximas Formações Provisórias
Cursos Relacionados
DataRobot
7 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a cientistas de dados e analistas de dados que desejam automatizar, avaliar e gerenciar modelos preditivos usando os recursos de aprendizado de máquina da DataRobot.
No final deste treinamento, os participantes serão capazes de:
- Carregar conjuntos de dados em DataRobot para analisar, avaliar e verificar a qualidade dos dados.
- Construir e treinar modelos para identificar variáveis importantes e atingir metas de previsão.
- Interpretar modelos para criar insights valiosos que são úteis na tomada de decisões de negócios.
- Monitorizar e gerir modelos para manter um desempenho de previsão optimizado.
AutoML with Auto-Keras
14 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a cientistas de dados, bem como a pessoas menos técnicas que desejam usar Auto-Keras para automatizar o processo de seleção e otimização de um modelo de aprendizado de máquina.
No final deste treinamento, os participantes serão capazes de:
- Automatizar o processo de treinamento de modelos de aprendizado de máquina altamente eficientes.
- Procurar automaticamente os melhores parâmetros para modelos de aprendizagem profunda.
- Crie modelos de aprendizado de máquina altamente precisos.
- Use o poder do aprendizado de máquina para resolver problemas de negócios do mundo real.
AdaBoost Python for Machine Learning
14 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a cientistas de dados e engenheiros de software que desejam usar AdaBoost para criar algoritmos de reforço para aprendizado de máquina com Python.
No final deste treinamento, os participantes serão capazes de:
- Configurar o ambiente de desenvolvimento necessário para começar a construir modelos de aprendizado de máquina com AdaBoost.
- Compreender a abordagem de aprendizagem de conjunto e como implementar o reforço adaptativo.
- Aprender a construir modelos AdaBoost para impulsionar algoritmos de aprendizado de máquina em Python.
- Utilizar a afinação de hiperparâmetros para aumentar a precisão e o desempenho dos modelos AdaBoost.
Machine Learning with Random Forest
14 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a cientistas de dados e engenheiros de software que desejam usar Random Forest para criar algoritmos de aprendizado de máquina para grandes conjuntos de dados.
No final deste treinamento, os participantes serão capazes de:
- Configurar o ambiente de desenvolvimento necessário para começar a construir modelos de aprendizado de máquina com Random forest.
- Compreender as vantagens de Random Forest e como implementá-lo para resolver problemas de classificação e regressão.
- Aprender a lidar com grandes conjuntos de dados e a interpretar múltiplas árvores de decisão em Random Forest.
- Avaliar e otimizar o desempenho do modelo de aprendizagem automática através da afinação dos hiperparâmetros.
Data Mining with Weka
14 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a analistas de dados de nível iniciante a intermediário e cientistas de dados que desejam usar Weka para executar tarefas de mineração de dados.
No final deste treinamento, os participantes serão capazes de:
- Instalar e configurar Weka.
- Compreender o ambiente e o workbench do Weka.
- Executar tarefas de mineração de dados usando Weka.
Machine Learning for Mobile Apps using Google’s ML Kit
14 horasEste treinamento ao vivo conduzido por instrutor (no local ou remoto) é destinado a desenvolvedores que desejam usar o Go ogle ML Kit para criar modelos de aprendizado de máquina otimizados para processamento em dispositivos móveis.
No final deste treinamento, os participantes serão capazes de:
- Configurar o ambiente de desenvolvimento necessário para começar a desenvolver recursos de aprendizado de máquina para aplicativos móveis.
- Integrar novas tecnologias de aprendizado de máquina em aplicativos Android e iOS usando as APIs ML Kit.
- Melhorar e otimizar as aplicações existentes utilizando o ML Kit SDK para processamento e implementação no dispositivo.
AutoML
14 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a pessoas técnicas com experiência em aprendizado de máquina que desejam otimizar os modelos de aprendizado de máquina usados para detetar padrões complexos em big data.
No final deste treinamento, os participantes serão capazes de:
- Instalar e avaliar várias ferramentas de código aberto AutoML (H2O AutoML, auto-sklearn, TPOT, TensorFlow, PyTorch, Auto-Keras, TPOT, Auto-WEKA, etc.)
- Treinar modelos de aprendizagem automática de alta qualidade.
- Resolver eficazmente diferentes tipos de problemas de aprendizagem automática supervisionada.
- Escrever apenas o código necessário para iniciar o processo de aprendizagem automática de máquinas.
Creating Custom Chatbots with Google AutoML
14 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a participantes com diferentes níveis de experiência que desejam aproveitar a plataforma Go ogle AutoML para criar chatbots personalizados para vários aplicativos.
No final deste treinamento, os participantes serão capazes de:
- Compreender os fundamentos do desenvolvimento do chatbot.
- Navegar na Google Cloud Platform e acessar AutoML.
- Prepare dados para treinar modelos de chatbot.
- Treinar e avaliar modelos de chatbot personalizados usando AutoML.
- Implementar e integrar chatbots em várias plataformas e canais.
- Monitorizar e otimizar o desempenho do chatbot ao longo do tempo.
Google Cloud AutoML
7 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a cientistas de dados, analistas de dados e desenvolvedores que desejam explorar AutoML produtos e recursos para criar e implantar modelos de treinamento de ML personalizados com o mínimo de esforço.
No final deste treinamento, os participantes serão capazes de:
- Explorar a linha de produtos AutoML para implementar diferentes serviços para vários tipos de dados.
- Preparar e rotular conjuntos de dados para criar modelos ML personalizados.
- Treinar e gerenciar modelos para produzir modelos de aprendizado de máquina precisos e justos.
- Fazer previsões usando modelos treinados para atender aos objetivos e necessidades de negócios.
Advanced Analytics with RapidMiner
14 horasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a analistas de dados de nível intermediário que desejam aprender como usar RapidMiner para estimar e projetar valores e utilizar ferramentas analíticas para previsão de séries temporais.
No final desta formação, os participantes serão capazes de:
- Aprender a aplicar a metodologia CRISP-DM, selecionar algoritmos de aprendizagem automática adequados e melhorar a construção e o desempenho do modelo.
- Utilizar RapidMiner para estimar e projetar valores, e utilizar ferramentas analíticas para a previsão de séries temporais.
RapidMiner for Machine Learning and Predictive Analytics
14 horasRapidMiner é uma plataforma de software de ciência de dados de fonte aberta para prototipagem e desenvolvimento rápidos de aplicações. Ele inclui um ambiente integrado para preparação de dados, aprendizado de máquina, aprendizado profundo, mineração de texto e análise preditiva.
Neste treinamento ao vivo conduzido por instrutor, os participantes aprenderão como usar o RapidMiner Studio para preparação de dados, aprendizado de máquina e implantação de modelo preditivo.
No final deste treinamento, os participantes serão capazes de:
- Instalar e configurar RapidMiner
- Preparar e visualizar dados com RapidMiner
- Validar modelos de aprendizado de máquina
- Mashup dados e criar modelos preditivos
- Operacionalizar a análise preditiva em um processo de negócios
- Resolver problemas e otimizar RapidMiner
Público-alvo
- Cientistas de dados
- Engenheiros
- Desenvolvedores
Formato do curso
- Parte palestra, parte discussão, exercícios e prática prática pesada
Nota
- Para solicitar uma formação personalizada para este curso, por favor contacte-nos para combinar.
Pattern Recognition
21 horasThis instructor-led, live training in Portugal (online or onsite) provides an introduction into the field of pattern recognition and machine learning. It touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics.
By the end of this training, participants will be able to:
- Apply core statistical methods to pattern recognition.
- Use key models like neural networks and kernel methods for data analysis.
- Implement advanced techniques for complex problem-solving.
- Improve prediction accuracy by combining different models.
Pattern Matching
14 horasPattern Matching é uma técnica utilizada para localizar padrões específicos numa imagem. Pode ser utilizada para determinar a existência de caraterísticas específicas numa imagem capturada, por exemplo, a etiqueta esperada num produto defeituoso numa linha de produção ou as dimensões especificadas de um componente. É diferente de "Pattern Recognition" (que reconhece padrões gerais com base em colecções maiores de amostras relacionadas) na medida em que dita especificamente o que estamos à procura e depois diz-nos se o padrão esperado existe ou não.
Formato do curso
- Este curso apresenta as abordagens, tecnologias e algoritmos utilizados no campo da correspondência de padrões, uma vez que se aplica a Machine Vision.
MLflow
21 horasEste treinamento ao vivo conduzido por instrutor (no local ou remoto) é destinado a cientistas de dados que desejam ir além da construção de modelos de ML e otimizar o processo de criação, rastreamento e implantação de modelos de ML.
No final deste treinamento, os participantes serão capazes de:
- Instalar e configurar MLflow e bibliotecas e estruturas de ML relacionadas.
- Apreciar a importância da rastreabilidade, reprodutibilidade e implantação de um modelo de ML
- Implantar modelos de ML em diferentes nuvens públicas, plataformas ou servidores locais.
- Dimensionar o processo de implementação de ML para acomodar vários utilizadores que colaboram num projeto.
- Criar um registo central para experimentar, reproduzir e implementar modelos de ML.
Kubeflow
35 horasEsse treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a desenvolvedores e cientistas de dados que desejam criar, implantar e gerenciar fluxos de trabalho de aprendizado de máquina em Kubernetes.
Ao final deste treinamento, os participantes serão capazes de:
- Instalar e configurar Kubeflow no local e na nuvem usando o AWS EKS (Elastic Kubernetes Service).
- Crie, implante e gerencie fluxos de trabalho de ML com base em contêineres Docker e Kubernetes.
- Executar pipelines de aprendizagem automática completos em diversas arquitecturas e ambientes de nuvem.
- Usando Kubeflow para gerar e gerenciar notebooks Jupyter.
- Criar treinamento de ML, ajuste de hiperparâmetros e servir cargas de trabalho em várias plataformas.