Programming with Big Data in R Training Course
Big Data is a term that refers to solutions destined for storing and processing large data sets. Developed by Google initially, these Big Data solutions have evolved and inspired other similar projects, many of which are available as open-source. R is a popular programming language in the financial industry.
Course Outline
Introduction to Programming Big Data with R (bpdR)
- Setting up your environment to use pbdR
- Scope and tools available in pbdR
- Packages commonly used with Big Data alongside pbdR
Message Passing Interface (MPI)
- Using pbdR MPI 5
- Parallel processing
- Point-to-point communication
- Send Matrices
- Summing Matrices
- Collective communication
- Summing Matrices with Reduce
- Scatter / Gather
- Other MPI communications
Distributed Matrices
- Creating a distributed diagonal matrix
- SVD of a distributed matrix
- Building a distributed matrix in parallel
Statistics Applications
- Monte Carlo Integration
- Reading Datasets
- Reading on all processes
- Broadcasting from one process
- Reading partitioned data
- Distributed Regression
- Distributed Bootstrap
Open Training Courses require 5+ participants.
Programming with Big Data in R Training Course - Booking
Programming with Big Data in R Training Course - Enquiry
Programming with Big Data in R - Consultancy Enquiry
Consultancy Enquiry
Testimonials (2)
The subject matter and the pace were perfect.
Tim - Ottawa Research and Development Center, Science Technology Branch, Agriculture and Agri-Food Canada
Course - Programming with Big Data in R
Michael the trainer is very knowledgeable and skillful about the subject of Big Data and R. He is very flexible and quickly customize the training meeting clients' need. He is also very capable to solve technical and subject matter problems on the go. Fantastic and professional training!.
Xiaoyuan Geng - Ottawa Research and Development Center, Science Technology Branch, Agriculture and Agri-Food Canada
Course - Programming with Big Data in R
Upcoming Courses
Related Courses
Introduction to Data Visualization with Tidyverse and R
7 HoursThe Tidyverse is a collection of versatile R packages for cleaning, processing, modeling, and visualizing data. Some of the packages included are: ggplot2, dplyr, tidyr, readr, purrr, and tibble.
In this instructor-led, live training, participants will learn how to manipulate and visualize data using the tools included in the Tidyverse.
By the end of this training, participants will be able to:
- Perform data analysis and create appealing visualizations
- Draw useful conclusions from various datasets of sample data
- Filter, sort and summarize data to answer exploratory questions
- Turn processed data into informative line plots, bar plots, histograms
- Import and filter data from diverse data sources, including Excel, CSV, and SPSS files
Audience
- Beginners to the R language
- Beginners to data analysis and data visualization
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Data Vault: Building a Scalable Data Warehouse
28 HoursIn this instructor-led, live training in Thailand, participants will learn how to build a Data Vault.
By the end of this training, participants will be able to:
- Understand the architecture and design concepts behind Data Vault 2.0, and its interaction with Big Data, NoSQL and AI.
- Use data vaulting techniques to enable auditing, tracing, and inspection of historical data in a data warehouse.
- Develop a consistent and repeatable ETL (Extract, Transform, Load) process.
- Build and deploy highly scalable and repeatable warehouses.
Spark Streaming with Python and Kafka
7 HoursThis instructor-led, live training in Thailand (online or onsite) is aimed at data engineers, data scientists, and programmers who wish to use Spark Streaming features in processing and analyzing real-time data.
By the end of this training, participants will be able to use Spark Streaming to process live data streams for use in databases, filesystems, and live dashboards.
Confluent KSQL
7 HoursThis instructor-led, live training in Thailand (online or onsite) is aimed at developers who wish to implement Apache Kafka stream processing without writing code.
By the end of this training, participants will be able to:
- Install and configure Confluent KSQL.
- Set up a stream processing pipeline using only SQL commands (no Java or Python coding).
- Carry out data filtering, transformations, aggregations, joins, windowing, and sessionization entirely in SQL.
- Design and deploy interactive, continuous queries for streaming ETL and real-time analytics.
Unified Batch and Stream Processing with Apache Beam
14 HoursApache Beam is an open source, unified programming model for defining and executing parallel data processing pipelines. It's power lies in its ability to run both batch and streaming pipelines, with execution being carried out by one of Beam's supported distributed processing back-ends: Apache Apex, Apache Flink, Apache Spark, and Google Cloud Dataflow. Apache Beam is useful for ETL (Extract, Transform, and Load) tasks such as moving data between different storage media and data sources, transforming data into a more desirable format, and loading data onto a new system.
In this instructor-led, live training (onsite or remote), participants will learn how to implement the Apache Beam SDKs in a Java or Python application that defines a data processing pipeline for decomposing a big data set into smaller chunks for independent, parallel processing.
By the end of this training, participants will be able to:
- Install and configure Apache Beam.
- Use a single programming model to carry out both batch and stream processing from withing their Java or Python application.
- Execute pipelines across multiple environments.
Format of the Course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- This course will be available Scala in the future. Please contact us to arrange.
Apache NiFi for Administrators
21 HoursIn this instructor-led, live training in Thailand (onsite or remote), participants will learn how to deploy and manage Apache NiFi in a live lab environment.
By the end of this training, participants will be able to:
- Install and configure Apachi NiFi.
- Source, transform and manage data from disparate, distributed data sources, including databases and big data lakes.
- Automate dataflows.
- Enable streaming analytics.
- Apply various approaches for data ingestion.
- Transform Big Data and into business insights.
Apache NiFi for Developers
7 HoursIn this instructor-led, live training in Thailand, participants will learn the fundamentals of flow-based programming as they develop a number of demo extensions, components and processors using Apache NiFi.
By the end of this training, participants will be able to:
- Understand NiFi's architecture and dataflow concepts.
- Develop extensions using NiFi and third-party APIs.
- Custom develop their own Apache Nifi processor.
- Ingest and process real-time data from disparate and uncommon file formats and data sources.
Apache Flink Fundamentals
28 HoursThis instructor-led, live training in Thailand (online or onsite) introduces the principles and approaches behind distributed stream and batch data processing, and walks participants through the creation of a real-time, data streaming application in Apache Flink.
By the end of this training, participants will be able to:
- Set up an environment for developing data analysis applications.
- Understand how Apache Flink's graph-processing library (Gelly) works.
- Package, execute, and monitor Flink-based, fault-tolerant, data streaming applications.
- Manage diverse workloads.
- Perform advanced analytics.
- Set up a multi-node Flink cluster.
- Measure and optimize performance.
- Integrate Flink with different Big Data systems.
- Compare Flink capabilities with those of other big data processing frameworks.
Python and Spark for Big Data (PySpark)
21 HoursIn this instructor-led, live training in Thailand, participants will learn how to use Python and Spark together to analyze big data as they work on hands-on exercises.
By the end of this training, participants will be able to:
- Learn how to use Spark with Python to analyze Big Data.
- Work on exercises that mimic real world cases.
- Use different tools and techniques for big data analysis using PySpark.
Introduction to Graph Computing
28 HoursIn this instructor-led, live training in Thailand, participants will learn about the technology offerings and implementation approaches for processing graph data. The aim is to identify real-world objects, their characteristics and relationships, then model these relationships and process them as data using a Graph Computing (also known as Graph Analytics) approach. We start with a broad overview and narrow in on specific tools as we step through a series of case studies, hands-on exercises and live deployments.
By the end of this training, participants will be able to:
- Understand how graph data is persisted and traversed.
- Select the best framework for a given task (from graph databases to batch processing frameworks.)
- Implement Hadoop, Spark, GraphX and Pregel to carry out graph computing across many machines in parallel.
- View real-world big data problems in terms of graphs, processes and traversals.
Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
21 HoursThis course is intended for developers and data scientists who want to understand and implement artificial intelligence in their applications. Special focus is placed on data analytics, distributed AI, and natural language processing.
Apache Spark MLlib
35 HoursMLlib is Spark’s machine learning (ML) library. Its goal is to make practical machine learning scalable and easy. It consists of common learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, as well as lower-level optimization primitives and higher-level pipeline APIs.
It divides into two packages:
-
spark.mllib contains the original API built on top of RDDs.
-
spark.ml provides higher-level API built on top of DataFrames for constructing ML pipelines.
Audience
This course is directed at engineers and developers seeking to utilize a built in Machine Library for Apache Spark
Hortonworks Data Platform (HDP) for Administrators
21 HoursThis instructor-led, live training in Thailand (online or onsite) introduces Hortonworks Data Platform (HDP) and walks participants through the deployment of Spark + Hadoop solution.
By the end of this training, participants will be able to:
- Use Hortonworks to reliably run Hadoop at a large scale.
- Unify Hadoop's security, governance, and operations capabilities with Spark's agile analytic workflows.
- Use Hortonworks to investigate, validate, certify and support each of the components in a Spark project.
- Process different types of data, including structured, unstructured, in-motion, and at-rest.
Impala for Business Intelligence
21 HoursCloudera Impala is an open source massively parallel processing (MPP) SQL query engine for Apache Hadoop clusters.
Impala enables users to issue low-latency SQL queries to data stored in Hadoop Distributed File System and Apache Hbase without requiring data movement or transformation.
Audience
This course is aimed at analysts and data scientists performing analysis on data stored in Hadoop via Business Intelligence or SQL tools.
After this course delegates will be able to
- Extract meaningful information from Hadoop clusters with Impala.
- Write specific programs to facilitate Business Intelligence in Impala SQL Dialect.
- Troubleshoot Impala.
Data Analysis with Hive/HiveQL
7 HoursThis course covers how to use Hive SQL language (AKA: Hive HQL, SQL on Hive, HiveQL) for people who extract data from Hive