Plan du cours
Introduction à l'apprentissage appliqué Machine Learning
- Apprentissage statistique vs. apprentissage automatique
- Itération et évaluation
- Compromis biais-variance
Machine Learning avec Scala
- Choix des bibliothèques
- Outils complémentaires
Régression
- Régression linéaire
- Généralisations et non-linéarité
- Exercices
Classification
- Rappel sur la classification bayésienne
- Bayes naïf
- Régression logistique
- K-Proches voisins
- Exercices
Validation croisée et rééchantillonnage
- Approches de validation croisée
- Bootstrap
- Exercices
Apprentissage non supervisé
- K-means clustering
- Exemples d'apprentissage non supervisé
- Défis de l'apprentissage non supervisé et au-delà des K-moyennes
Pré requis
Connaissance du langage de programmation Java/Scala. Une connaissance de base des statistiques et de l'algèbre linéaire est recommandée.
Nos clients témoignent (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Formation - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.