AI-Powered Noninvasive Electrocardiographic Imaging Using the Priori-to-Attention Network (P2AN) for Wearable Health Monitoring
Abstract
:1. Introduction
2. Related Works
2.1. Electrocardiographic Imaging (ECGI)
2.2. Neural Network Methods
3. Methods
3.1. Data Collection
- Dataset 1: 20 groups which were randomly selected from the 128 nodes in the epicardium, and the amplitude was arbitrarily adjusted to drop, ranging from 25% to 80%.
- Dataset 2: 20 groups which were randomly selected from the 128 nodes in the epicardium, and the depolarization time was arbitrarily delayed, ranging from 25 ms to 50 ms.
- Dataset 3: Add Gaussian noise with SNRs of 30 dB, 25 dB, 20 dB, and 15 dB, respectively, based on Dataset 1.
- Dataset 4: Add Gaussian noise with SNRs of 30 dB, 25 dB, 20 dB, and 15 dB, respectively, based on Dataset 2.
3.2. Prior-to-Attention Network
Algorithm 1 Training process of P2AN |
|
3.3. Evaluation Metrics
4. Results
4.1. Myocardial Ischemia
4.2. Ventricular Hypertrophy
4.3. Noise Effect
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Top 10 Causes of Death. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 20 December 2024).
- Sun, Q.; Wang, L.; Li, J.; Liang, C.; Yang, J.; Chen, Y.; Wang, C. Multi-Phase ECG Dynamic Features for Detecting Myocardial Ischemia and Identifying Its Etiology Using Deterministic Learning. Biomed. Signal Process. Control 2024, 88, 105498. [Google Scholar] [CrossRef]
- DeFilippis, A.P.; Chapman, A.R.; Mills, N.L.; de Lemos, J.A.; Arbab-Zadeh, A.; Newby, L.K.; Morrow, D.A. Assessment and Treatment of Patients With Type 2 Myocardial Infarction and Acute Nonischemic Myocardial Injury. Circulation 2019, 140, 1661–1678. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.G.; Juarros, M.A.; Leinwand, L.A. Regression of Cardiac Hypertrophy in Health and Disease: Mechanisms and Therapeutic Potential. Nat. Rev. Cardiol. 2023, 20, 347–363. [Google Scholar] [CrossRef]
- Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial Intelligence-Enhanced Electrocardiography in Cardiovascular Disease Management. Nat. Rev. Cardiol. 2021, 18, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Chen, J.; Li, K.; Huang, L.; Xu, L.; Bian, G.B.; Millham, R.; de Albuquerque, V.H.C.; Wu, W. Conditional Generative Adversarial Network Driven Variable-Duration Single-Lead to 12-Lead Electrocardiogram Reconstruction. Biomed. Signal Process. Control 2024, 95, 106377. [Google Scholar] [CrossRef]
- Arnold, V.X.; Young, S.D. The Potential of Wearable Sensors for Detecting Cognitive Rumination: A Scoping Review. Sensors 2025, 25, 654. [Google Scholar] [CrossRef]
- Yang, J.; Wang, T.; Cui, H.; Sun, L. A New Self-Made 16-Channel Capacitive Electrocardiography System: An Investigation and Validation for Non-Contact Electrodes. Sensors 2025, 25, 445. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, N.; Xia, S.; Tong, J. Atrial Fibrillation Prediction Based on Recurrence Plot and ResNet. Sensors 2024, 24, 4978. [Google Scholar] [CrossRef]
- Kirkbas, A.; Kizilkaya, A. Automated ECG Arrhythmia Classification Using Feature Images with Common Matrix Approach-Based Classifier. Sensors 2025, 25, 1220. [Google Scholar] [CrossRef]
- Sedova, K.A.; van Dam, P.M.; Sbrollini, A.; Burattini, L.; Necasova, L.; Blahova, M.; Bocek, J.; Sramko, M.; Kautzner, J. Assessment of Electrical Dyssynchrony in Cardiac Resynchronization Therapy: 12-Lead Electrocardiogram vs. 96-Lead Body Surface Map. Europace 2023, 25, 554–560. [Google Scholar] [CrossRef]
- Bergquist, J.; Rupp, L.; Zenger, B.; Brundage, J.; Busatto, A.; MacLeod, R.S. Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. Hearts 2021, 2, 514–542. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yao, B. Physics-Constrained Deep Learning for Robust Inverse ECG Modeling. IEEE Trans. Autom. Sci. Eng. 2023, 20, 151–166. [Google Scholar] [CrossRef]
- Bouhamama, O.; Potse, M.; Bear, L.; Weynans, L. A Patchwork Method to Improve the Performance of Current Methods for Solving the Inverse Problem of Electrocardiography. IEEE Trans. Biomed. Eng. 2023, 70, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.J.; Finlay, D.D.; Guldenring, D.; Bond, R.R.; McCann, A.J.; Scott, P.J.; Adgey, J.A.; Harbinson, M.T. Epicardial Potentials Computed from the Body Surface Potential Map Using Inverse Electrocardiography and an Individualised Torso Model Improve Sensitivity for Acute Myocardial Infarction Diagnosis. Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 728–735. [Google Scholar] [CrossRef]
- Electrocardiographic Imaging Including Intracardiac Information to Achieve Accurate Global Mapping during Atrial Fibrillation. Biomed. Signal Process. Control 2021, 64, 102354. [CrossRef]
- Huiskamp, G.; Van Oosterom, A. The Depolarization Sequence of the Human Heart Surface Computed from Measured Body Surface Potentials. IEEE Trans. Biomed. Eng. 1988, 35, 1047–1058. [Google Scholar] [CrossRef]
- Van der Graaf, A.M.; Bhagirath, P.; Ramanna, H.; van Driel, V.J.; de Hooge, J.; de Groot, N.M.; Götte, M.J. Noninvasive Imaging of Cardiac Excitation: Current Status and Future Perspective. Ann. Noninvasive Electrocardiol. 2014, 19, 105–113. [Google Scholar] [CrossRef]
- Cluitmans, M.; Brooks, D.H.; MacLeod, R.; Dössel, O.; Guillem, M.S.; van Dam, P.M.; Svehlikova, J.; He, B.; Sapp, J.; Wang, L.; et al. Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications. Front. Physiol. 2018, 9, 1305. [Google Scholar] [CrossRef]
- Joy, G.; Lopes, L.R.; Webber, M.; Ardissino, A.M.; Wilson, J.; Chan, F.; Pierce, I.; Hughes, R.K.; Moschonas, K.; Shiwani, H.; et al. Electrophysiological Characterization of Subclinical and Overt Hypertrophic Cardiomyopathy by Magnetic Resonance Imaging-Guided Electrocardiography. J. Am. Coll. Cardiol. 2024, 83, 1042–1055. [Google Scholar] [CrossRef]
- Bacoyannis, T.; Ly, B.; Cedilnik, N.; Cochet, H.; Sermesant, M. Deep Learning Formulation of Electrocardiographic Imaging Integrating Image and Signal Information with Data-Driven Regularization. Europace 2021, 23, i55–i62. [Google Scholar] [CrossRef]
- Tenderini, R.; Pagani, S.; Quarteroni, A.; Deparis, S. PDE-Aware Deep Learning for Inverse Problems in Cardiac Electrophysiology. SIAM J. Sci. Comput. 2022, 44, B605–B639. [Google Scholar] [CrossRef]
- Toloubidokhti, M.; Gyawali, P.K.; Gharbia, O.A.; Jiang, X.; Font, J.C.; Bergquist, J.A.; Zenger, B.; Good, W.W.; Brooks, D.H.; MacLeod, R.S.; et al. Deep Adaptive Electrocardiographic Imaging with Generative Forward Model for Error Reduction. In Functional Imaging and Modeling of the Heart; Ennis, D.B., Perotti, L.E., Wang, V.Y., Eds.; Springer: Cham, Switzerland, 2021; pp. 471–481. [Google Scholar] [CrossRef]
- Jiang, X.; Toloubidokhti, M.; Bergquist, J.; Zenger, B.; Good, W.W.; MacLeod, R.S.; Wang, L. Improving Generalization by Learning Geometry-Dependent and Physics-Based Reconstruction of Image Sequences. IEEE Trans. Med. Imaging 2023, 42, 403–415. [Google Scholar] [CrossRef]
- Wang, L.; Wu, W.; Chen, Y.; Liu, C. A New ISTA-net Solution to Inverse Problem of Electrocardiology. In Proceedings of the 2019 International Conference on Computer Network, Communication and Information Systems (CNCI 2019), Qingdao, China, 27–29 March 2019; Volume 2019, pp. 105–111. [Google Scholar]
- Mu, L.; Liu, H. Cardiac Transmembrane Potential Imaging with GCN Based Iterative Soft Threshold Network. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2021; De Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C., Eds.; Springer: Cham, Switzerland, 2021; pp. 547–556. [Google Scholar] [CrossRef]
- Xie, S.; Cheng, L.; Liu, H. Lnista-Net: Learning Nonlocal Regularized Iterative Shrinkage-Thresholding Network For Noninvasive Cardiac Transmembrane Potential Imaging. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 183–186. [Google Scholar] [CrossRef]
- Horvath, J.; Shien, L.; Peng, T.; Malik, A.; Trew, M.; Bear, L. Deep Learning Neural Nets for Detecting Heart Activity. arXiv 2019, arXiv:1901.09831. [Google Scholar] [CrossRef]
- Stenroos, M.; Haueisen, J. Boundary Element Computations in the Forward and Inverse Problems of Electrocardiography: Comparison of Collocation and Galerkin Weightings. IEEE Trans. Biomed. Eng. 2008, 55, 2124–2133. [Google Scholar] [CrossRef]
- Wang, D.; Kirby, R.M.; Johnson, C.R. Finite-Element-Based Discretization and Regularization Strategies for 3-D Inverse Electrocardiography. IEEE Trans. Biomed. Eng. 2011, 58, 1827–1838. [Google Scholar] [CrossRef]
- De Ambroggi, L.; Corlan, A.D. Body Surface Potential Mapping. In Comprehensive Electrocardiology; Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J., Eds.; Springer: London, UK, 2010; pp. 1375–1413. [Google Scholar] [CrossRef]
- Zhang, J.; Ghanem, B. ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1828–1837. [Google Scholar] [CrossRef]
- Van Oosterom, A. ECGSIM: An Interactive Tool for Studying the Genesis of QRST Waveforms. Heart 2004, 90, 165–168. [Google Scholar] [CrossRef]
- Geselowitz, D.B.; Miller, W.T. A Bidomain Model for Anisotropic Cardiac Muscle. Ann. Biomed. Eng. 1983, 11, 191–206. [Google Scholar] [CrossRef]
- Erem, B.; Van Dam, P.M.; Brooks, D.H. Identifying Model Inaccuracies and Solution Uncertainties in Noninvasive Activation-Based Imaging of Cardiac Excitation Using Convex Relaxation. IEEE Trans. Med. Imaging 2014, 33, 902–912. [Google Scholar] [CrossRef]
- Van Huysduynen, B.H.; Swenne, C.A.; Bax, J.J.; Bleeker, G.B.; Draisma, H.H.; Van Erven, L.; Molhoek, S.G.; Van De Vooren, H.; Van Der Wall, E.E.; Schalij, M.J. Dispersion of Repolarization in Cardiac Resynchronization Therapy. Heart Rhythm 2005, 2, 1286–1293. [Google Scholar] [CrossRef]
- Narotamo, H.; Dias, M.; Santos, R.; Carreiro, A.V.; Gamboa, H.; Silveira, M. Deep Learning for ECG Classification: A Comparative Study of 1D and 2D Representations and Multimodal Fusion Approaches. Biomed. Signal Process. Control 2024, 93, 106141. [Google Scholar] [CrossRef]
- Buchner, T.; Zajdel, M.; Pȩczalski, K.; Nowak, P. Finite Velocity of ECG Signal Propagation: Preliminary Theory, Results of a Pilot Experiment and Consequences for Medical Diagnosis. Sci. Rep. 2023, 13, 4716. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar] [CrossRef]
- Tao, Y.; Li, Z.; Gu, C.; Jiang, B.; Zhang, Y. ECG-based Expert-Knowledge Attention Network to Tachyarrhythmia Recognition. Biomed. Signal Process. Control 2022, 76, 103649. [Google Scholar] [CrossRef]
- Serrano, R.R.M.; Velasco-Bosom, S.; Dominguez-Alfaro, A.; Picchio, M.L.; Mantione, D.; Mecerreyes, D.; Malliaras, G.G. High Density Body Surface Potential Mapping with Conducting Polymer-Eutectogel Electrode Arrays for ECG Imaging. Adv. Sci. 2024, 11, 2301176. [Google Scholar] [CrossRef]
- Hu, W.; Bian, G.; Huang, L.; Pi, Y.; Zhang, X.; Zhang, X.; de Albuquerque, V.H.C.; Wu, W. Constructing Bodily Emotion Maps Based on High-Density Body Surface Potentials for Psychophysiological Computing. IEEE J. Biomed. Health Inform. 2024, 28, 2500–2511. [Google Scholar] [CrossRef]
- Onak, Ö.N.; Erenler, T.; Dogrusoz, Y.S. A Novel Data-Adaptive Regression Framework Based on Multivariate Adaptive Regression Splines for Electrocardiographic Imaging. IEEE Trans. Biomed. Eng. 2022, 69, 963–974. [Google Scholar] [CrossRef]
- Rababah Msc, A.S.; Bond, R.R.; Msc, K.R.; Guldenring, D.; McLaughlin, J.; Finlay, D.D. Novel Hybrid Method for Interpolating Missing Information in Body Surface Potential Maps. J. Electrocardiol. 2019, 57S, S51–S55. [Google Scholar] [CrossRef]
- Rodrigo, M.; Climent, A.M.; Liberos, A.; Fernández-Aviles, F.; Atienza, F.; Guillem, M.S.; Berenfeld, O. Minimal Configuration of Body Surface Potential Mapping for Discrimination of Left versus Right Dominant Frequencies during Atrial Fibrillation. Pacing Clin. Electrophysiol. 2017, 40, 940–946. [Google Scholar] [CrossRef]
- Parreira, L.; Carmo, P.; Adragao, P.; Nunes, S.; Soares, A.; Marinheiro, R.; Budanova, M.; Zubarev, S.; Chmelevsky, M.; Pinho, J.; et al. Electrocardiographic Imaging (ECGI): What Is the Minimal Number of Leads Needed to Obtain a Good Spatial Resolution? J. Electrocardiol. 2020, 62, 86–93. [Google Scholar] [CrossRef]
- Daly, M.; Finlay, D.; Scott, P.; Nugent, C.; Adgey, A.; Harbinson, M. Pre-Hospital Body Surface Potential Mapping Improves Early Diagnosis of Acute Coronary Artery Occlusion in Patients with Ventricular Fibrillation and Cardiac Arrest. Resuscitation 2013, 84, 37–41. [Google Scholar] [CrossRef]
- McCann, A.; Luca, A.; Pascale, P.; Pruvot, E.; Vesin, J.M. Novel Spatiotemporal Processing Tools for Body-Surface Potential Map Signals for the Prediction of Catheter Ablation Outcome in Persistent Atrial Fibrillation. Front. Physiol. 2022, 13, 1001060. [Google Scholar] [CrossRef]
P2AN | ISTA | FFNN | |
---|---|---|---|
RE | 0.310 (0.204) | 0.459 (0.139) | 0.510 (0.127) |
CC | 0.973 (0.048) | 0.974 (0.055) | 0.995 (0.012) |
LE (mm) | 13.439 (9.477) | 22.920 (16.236) | 44.142 (26.404) |
P2AN | ISTA | FFNN | |
---|---|---|---|
RE | 0.335 (0.159) | 0.462 (0.113) | 0.487 (0.117) |
CC | 0.887 (0.085) | 0.815 (0.079) | 0.796 (0.076) |
LE (mm) | 11.414 (6.742) | 15.829 (9.113) | 22.630 (17.859) |
P2AN | ISTA | FFNN | ||
---|---|---|---|---|
30 dB | RE | 0.312 (0.202) | 0.460 (0.138) | 0.500 (0.128) |
CC | 0.973 (0.050) | 0.973 (0.056) | 0.995 (0.013) | |
LE (mm) | 13.244 (9.645) | 21.605 (15.784) | 45.339 (26.558) | |
25 dB | RE | 0.310 (0.206) | 0.462 (0.137) | 0.500 (0.129) |
CC | 0.974 (0.045) | 0.973 (0.056) | 0.994 (0.013) | |
LE (mm) | 14.308 (10.834) | 25.534 (17.932) | 44.514 (27.328) | |
20 dB | RE | 0.313 (0.205) | 0.519 (0.161) | 0.496 (0.131) |
CC | 0.979 (0.034) | 0.904 (0.110) | 0.994 (0.014) | |
LE (mm) | 13.594 (9.635) | 22.089 (16.567) | 43.942 (24.339) | |
15 dB | RE | 0.316 (0.208) | 0.740 (0.102) | 0.502 (0.126) |
CC | 0.984 (0.024) | 0.665 (0.153) | 0.992 (0.020) | |
LE (mm) | 15.166 (10.578) | 24.888 (19.245) | 40.429 (23.307) |
P2AN | ISTA | FFNN | ||
---|---|---|---|---|
30 dB | RE | 0.334 (0.159) | 0.461 (0.114) | 0.486 (0.118) |
CC | 0.888 (0.085) | 0.816 (0.079) | 0.796 (0.076) | |
LE (mm) | 11.334 (6.858) | 9.240 (15.764) | 23.736 (18.062) | |
25 dB | RE | 0.336 (0.160) | 0.461 (0.112) | 0.487 (0.111) |
CC | 0.886 (0.085) | 0.816 (0.079) | 0.797 (0.075) | |
LE (mm) | 11.362 (6.865) | 15.711 (8.971) | 25.597 (21.224) | |
20 dB | RE | 0.334 (0.158) | 0.517 (0.147) | 0.492 (0.104) |
CC | 0.888 (0.084) | 0.764 (0.119) | 0.794 (0.072) | |
LE (mm) | 11.137 (6.659) | 16.327 (9.322) | 24.197 (18.939) | |
15 dB | RE | 0.334 (0.159) | 0.725 (0.132) | 0.490 (0.121) |
CC | 0.888 (0.085) | 0.584 (0.138) | 0.792 (0.077) | |
LE (mm) | 11.036 (6.709) | 15.869 (9.714) | 26.596 (19.670) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Dong, H.; Zhang, X.; Millham, R.; Xu, L.; Wu, W. AI-Powered Noninvasive Electrocardiographic Imaging Using the Priori-to-Attention Network (P2AN) for Wearable Health Monitoring. Sensors 2025, 25, 1810. https://doi.org/10.3390/s25061810
He S, Dong H, Zhang X, Millham R, Xu L, Wu W. AI-Powered Noninvasive Electrocardiographic Imaging Using the Priori-to-Attention Network (P2AN) for Wearable Health Monitoring. Sensors. 2025; 25(6):1810. https://doi.org/10.3390/s25061810
Chicago/Turabian StyleHe, Shijie, Hanrui Dong, Xianbin Zhang, Richard Millham, Lin Xu, and Wanqing Wu. 2025. "AI-Powered Noninvasive Electrocardiographic Imaging Using the Priori-to-Attention Network (P2AN) for Wearable Health Monitoring" Sensors 25, no. 6: 1810. https://doi.org/10.3390/s25061810
APA StyleHe, S., Dong, H., Zhang, X., Millham, R., Xu, L., & Wu, W. (2025). AI-Powered Noninvasive Electrocardiographic Imaging Using the Priori-to-Attention Network (P2AN) for Wearable Health Monitoring. Sensors, 25(6), 1810. https://doi.org/10.3390/s25061810