Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artificial intelligence-enhanced electrocardiography in cardiovascular disease management

Abstract

The application of artificial intelligence (AI) to the electrocardiogram (ECG), a ubiquitous and standardized test, is an example of the ongoing transformative effect of AI on cardiovascular medicine. Although the ECG has long offered valuable insights into cardiac and non-cardiac health and disease, its interpretation requires considerable human expertise. Advanced AI methods, such as deep-learning convolutional neural networks, have enabled rapid, human-like interpretation of the ECG, while signals and patterns largely unrecognizable to human interpreters can be detected by multilayer AI networks with precision, making the ECG a powerful, non-invasive biomarker. Large sets of digital ECGs linked to rich clinical data have been used to develop AI models for the detection of left ventricular dysfunction, silent (previously undocumented and asymptomatic) atrial fibrillation and hypertrophic cardiomyopathy, as well as the determination of a person’s age, sex and race, among other phenotypes. The clinical and population-level implications of AI-based ECG phenotyping continue to emerge, particularly with the rapid rise in the availability of mobile and wearable ECG technologies. In this Review, we summarize the current and future state of the AI-enhanced ECG in the detection of cardiovascular disease in at-risk populations, discuss its implications for clinical decision-making in patients with cardiovascular disease and critically appraise potential limitations and unknowns.

Key points

  • The feasibility and potential value of the application of advanced artificial intelligence methods, particularly deep-learning convolutional neural networks (CNNs), to the electrocardiogram (ECG) have been demonstrated.

  • CNNs developed with the use of large numbers of digital ECGs linked to rich clinical datasets might be able to perform accurate and nuanced, human-like interpretation of ECGs.

  • CNNs have also been developed to detect asymptomatic left ventricular dysfunction, silent atrial fibrillation, hypertrophic cardiomyopathy and an individual’s age, sex and race on the basis of the ECG alone.

  • CNNs to detect other cardiac conditions, such as aortic valve stenosis and amyloid heart disease, are in active development.

  • These approaches might be applicable to the standard 12-lead ECG or to data obtained from single-lead or multilead mobile or wearable ECG technologies.

  • Evidence on patient outcomes, as well as the challenges and potential limitations from the real-world implementation of the artificial intelligence-enhanced ECG, continues to emerge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of a convolutional neural network using the 12-lead ECG and application to detect silent atrial fibrillation.
Fig. 2: The AI–ECG to detect HCM.
Fig. 3: Framework for AI–ECG applications in clinical practice.
Fig. 4: AI–ECG Dashboard linked from within the electronic health record for point-of-care application.

Similar content being viewed by others

References

  1. Krizhevsky, A., Sustskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1106–1114 (2012).

    Google Scholar 

  2. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article  Google Scholar 

  3. Gottesman, O. et al. Guidelines for reinforcement learning in healthcare. Nat. Med. 25, 16–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Pipberger, H. V., Freis, E. D., Taback, L. & Mason, H. L. Preparation of electrocardiographic data for analysis by digital electronic computer. Circulation 21, 413–418 (1960).

    Article  CAS  PubMed  Google Scholar 

  5. Caceres, C. A. & Rikli, A. E. The digital computer as an aid in the diagnosis of cardiovascular disease. Trans. NY Acad. Sci. 23, 240–245 (1961).

    Article  CAS  Google Scholar 

  6. Caceres, C. A. et al. Computer extraction of electrocardiographic parameters. Circulation 25, 356–362 (1962).

    Article  CAS  PubMed  Google Scholar 

  7. Rikli, A. E. et al. Computer analysis of electrocardiographic measurements. Circulation 24, 643–649 (1961).

    Article  CAS  PubMed  Google Scholar 

  8. Hannun, A. Y. et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ribeiro, A. H. et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 11, 1760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith, S. W. et al. A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation. J. Electrocardiol. 52, 88–95 (2019).

    Article  PubMed  Google Scholar 

  11. Zhu, H. et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. Lancet Digit. Health 2, E348–E357 (2020).

    Article  PubMed  Google Scholar 

  12. Kashou, A. H. et al. A comprehensive artificial intelligence–enabled electrocardiogram interpretation program. Cardiovasc. Digit. Health J. 1, 62–70 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bumgarner, J. M. et al. Smartwatch algorithm for automated detection of atrial fibrillation. J. Am. Coll. Cardiol. 71, 2381–2388 (2018).

    Article  PubMed  Google Scholar 

  14. Tison, G. H. et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 3, 409–416 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schlapfer, J. & Wellens, H. J. Computer-interpreted electrocardiograms: benefits and limitations. J. Am. Coll. Cardiol. 70, 1183–1192 (2017).

    Article  PubMed  Google Scholar 

  16. Redfield, M. M. et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289, 194–202 (2003).

    Article  PubMed  Google Scholar 

  17. Wang, T. J. et al. Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108, 977–982 (2003).

    Article  PubMed  Google Scholar 

  18. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128, e240–e327 (2013).

    PubMed  Google Scholar 

  19. Vasan, R. S. et al. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: the Framingham Heart Study. JAMA 288, 1252–1259 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Gruca, T. S., Pyo, T. H. & Nelson, G. C. Providing cardiology care in rural areas through visiting consultant clinics. J. Am. Heart Assoc. 5, e002909 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Costello-Boerrigter, L. C. et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J. Am. Coll. Cardiol. 47, 345–353 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Attia, Z. I. et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 25, 70–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Attia, Z. I. et al. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. J. Cardiovasc. Electrophysiol. 30, 668–674 (2019).

    Article  PubMed  Google Scholar 

  24. Adedinsewo, D. et al. An artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea. Circ. Arrhythm. Electrophysiol. 13, e008437 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. FDA. Emergency use of the ELECT during the COVID-19 pandemic https://www.fda.gov/media/137930/download (2020).

  26. Gladstone, D. J. et al. Atrial fibrillation in patients with cryptogenic stroke. N. Engl. J. Med. 370, 2467–2477 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Hart, R. G. et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N. Engl. J. Med. 378, 2191–2201 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Diener, H. C. et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N. Engl. J. Med. 380, 1906–1917 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Siontis, K. C. et al. Typical, atypical, and asymptomatic presentations of new-onset atrial fibrillation in the community: characteristics and prognostic implications. Heart Rhythm. 13, 1418–1424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. US Preventive Services Task Force. Screening for atrial fibrillation with electrocardiography: US Preventive Services Task Force recommendation statement. JAMA 320, 478–484 (2018).

    Article  Google Scholar 

  31. Perez, M. V. et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N. Engl. J. Med. 381, 1909–1917 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Attia, Z. I. et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 394, 861–867 (2019).

    Article  PubMed  Google Scholar 

  33. Palano, F. et al. Assessing atrial fibrillation substrates by P wave analysis: a comprehensive review. High Blood Press. Cardiovasc. Prev. 27, 341–347 (2020).

    Article  PubMed  Google Scholar 

  34. Dewland, T. A. et al. Atrial ectopy as a predictor of incident atrial fibrillation: a cohort study. Ann. Intern. Med. 159, 721–728 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Han, L. et al. Atrial fibrillation burden signature and near-term prediction of stroke: a machine learning analysis. Circ. Cardiovasc. Qual. Outcomes 12, e005595 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lip, G. Y., Nieuwlaat, R., Pisters, R., Lane, D. A. & Crijns, H. J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest 137, 263–272 (2010).

    Article  PubMed  Google Scholar 

  37. Inohara, T. et al. Association of of atrial fibrillation clinical phenotypes with treatment patterns and outcomes: a multicenter registry study. JAMA Cardiol. 3, 54–63 (2018).

    Article  PubMed  Google Scholar 

  38. Semsarian, C., Ingles, J., Maron, M. S. & Maron, B. J. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 65, 1249–1254 (2015).

    Article  PubMed  Google Scholar 

  39. Maron, B. J. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation 92, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Maron, B. J., Haas, T. S., Murphy, C. J., Ahluwalia, A. & Rutten-Ramos, S. Incidence and causes of sudden death in U.S. college athletes. J. Am. Coll. Cardiol. 63, 1636–1643 (2014).

    Article  PubMed  Google Scholar 

  41. McLeod, C. J. et al. Outcome of patients with hypertrophic cardiomyopathy and a normal electrocardiogram. J. Am. Coll. Cardiol. 54, 229–233 (2009).

    Article  PubMed  Google Scholar 

  42. Maron, B. J. et al. Assessment of the 12-lead electrocardiogram as a screening test for detection of cardiovascular disease in healthy general populations of young people (12-25 years of age): a scientific statement from the American Heart Association and the American College of Cardiology. J. Am. Coll. Cardiol. 64, 1479–1514 (2014).

    Article  PubMed  Google Scholar 

  43. Corrado, D. et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur. Heart J. 31, 243–259 (2010).

    Article  PubMed  Google Scholar 

  44. Uberoi, A. et al. Interpretation of the electrocardiogram of young athletes. Circulation 124, 746–757 (2011).

    Article  PubMed  Google Scholar 

  45. Ko, W. Y. et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram. J. Am. Coll. Cardiol. 75, 722–733 (2020).

    Article  PubMed  Google Scholar 

  46. Tison, G. H., Zhang, J., Delling, F. N. & Deo, R. C. Automated and interpretable patient ECG profiles for disease detection, tracking, and discovery. Circ. Cardiovasc. Qual. Outcomes 12, e005289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ferreira, J. P. et al. Abnormalities of potassium in heart failure: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 2836–2850 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Galloway, C. D. et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol. 4, 428–436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Attia, Z. I. et al. Novel bloodless potassium determination using a signal-processed single-Lead ECG. J. Am. Heart Assoc. 5, e002746 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Attia, Z. I. et al. Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: a proof of concept study. PLoS ONE 13, e0201059 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Levy, A. E. et al. Applications of machine learning in decision analysis for dose management for dofetilide. PLoS ONE 14, e0227324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yasin, O. Z. et al. Noninvasive blood potassium measurement using signal-processed, single-lead ECG acquired from a handheld smartphone. J. Electrocardiol. 50, 620–625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shi, S. et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 5, 802–810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bangalore, S. et al. ST-segment elevation in patients with Covid-19 — a case series. N. Engl. J. Med. 382, 2478–2480 (2020).

    Article  PubMed  Google Scholar 

  55. Vollmer, S. et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ 368, l6927 (2020).

    Article  PubMed  Google Scholar 

  56. Yao, X. et al. ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): rationale and design of a pragmatic cluster randomized trial. Am. Heart J. 219, 31–36 (2020).

    Article  PubMed  Google Scholar 

  57. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04000087 (2020).

  58. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04208971 (2020).

  59. Attia, Z. I. et al. Age and sex estimation using artificial intelligence from standard 12-lead ECGs. Circ. Arrhythm. Electrophysiol. 12, e007284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kashou, A. H. et al. Recurrent cryptogenic stroke: a potential role for an artificial intelligence-enabled electrocardiogram? Heart Rhythm. Case Rep. 6, 202–205 (2020).

    Google Scholar 

  61. Siontis, K. C., Siontis, G. C., Contopoulos-Ioannidis, D. G. & Ioannidis, J. P. Diagnostic tests often fail to lead to changes in patient outcomes. J. Clin. Epidemiol. 67, 612–621 (2014).

    Article  PubMed  Google Scholar 

  62. Price, W. N. 2nd & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25, 37–43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krittanawong, C. et al. Integrating blockchain technology with artificial intelligence for cardiovascular medicine. Nat. Rev. Cardiol. 17, 1–3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kuo, T. T., Gabriel, R. A., Cidambi, K. R. & Ohno-Machado, L. EXpectation Propagation LOgistic REgRession on permissioned blockCHAIN (ExplorerChain): decentralized online healthcare/genomics predictive model learning. J. Am. Med. Inform. Assoc. 27, 747–756 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Su, J., Vargas, D. V. & Kouichi, S. One pixel attack for fooling deep neural networks. arXiv https://arxiv.org/abs/1710.08864 (2017).

  66. Noseworthy, P. A. et al. Assessing and mitigating bias in medical artificial intelligence: the effects of race and ethnicity on a deep learning model for ECG analysis. Circ. Arrhythm. Electrophysiol. 13, e007988 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Raghunath, S. et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 26, 886–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, T. M., Huang, C. H., Shih, E. S. C., Hu, Y. F. & Hwang, M. J. Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model. iScience 23, 100886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Feeny, A. K. et al. Machine learning of 12-lead QRS waveforms to identify cardiac resynchronization therapy patients with differential outcomes. Circ. Arrhythm. Electrophysiol. 13, e008210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lopez-Jimenez, F. et al. Artificial intelligence in cardiology: present and future. Mayo Clin. Proc. 95, 1015–1039 (2020).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.C.S., P.A.N. and Z.I.A. researched data for the article and wrote the manuscript. All the authors discussed its content and reviewed and edited it before submission.

Corresponding author

Correspondence to Paul A. Friedman.

Ethics declarations

Competing interests

P.A.N., Z.I.A., P.A.F. and the Mayo Clinic have filed patents on several AI–ECG algorithms and could receive financial benefit from the use of this technology. At no point will P.A.N., Z.I.A., P.A.F. or the Mayo Clinic benefit financially from its use for the care of patients at the Mayo Clinic.

Additional information

Peer review information

Nature Reviews Cardiology thanks C. Krittanawong, S. Narayan and N. Peters for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siontis, K.C., Noseworthy, P.A., Attia, Z.I. et al. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol 18, 465–478 (2021). https://doi.org/10.1038/s41569-020-00503-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00503-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing