Skip to main content

Residual Cascade CNN for Detection of Spatially Relevant Objects in Agriculture: The Grape-Stem Paradigm

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14253))

Included in the following conference series:

  • 867 Accesses

Abstract

Computer vision is becoming increasingly important in agriculture, as it can provide important insights and lead to better informed decisions and reduce costs. However, working on the agriculture domain introduces important challenges, such as adverse conditions, small structures and lack of large datasets, hindering its wide adoption on multiple cases. This work presents an approach to improve the performance of detecting challenging small objects, by exploiting their spatial structure under the hypothesis that they are located close to larger objects, which we define as anchor. This is achieved by providing feature maps from the detections of the anchor class to the network responsible for detecting the secondary class. Thus, the secondary class object detection is formulated as a residual problem on top of the anchor class detection, benefiting from an activation bias close to the anchor object spatial locations. Experiments on the grape-stem and capsicum-peduncle cases, demonstrate increased performance against more computationally expensive baselines, resulting in improved metrics at 37% of baseline FLOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.: YOLOv4: optimal speed and accuracy of object detection (2020)

    Google Scholar 

  2. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

  3. Cavero, M., Sa, L.E.: Sweet pepper recognition and peduncle pose estimation (2021). https://hdl.handle.net/11285/648430

  4. Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., Yan, Y.: Blendmask: top-down meets bottom-up for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8573–8581 (2020)

    Google Scholar 

  5. Giang, T.T.H., Khai, T.Q., Im, D.Y., Ryoo, Y.J.: Fast detection of tomato sucker using semantic segmentation neural networks based on RGB-D images. Sensors 22(14) (2022)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  7. Halstead, M., Denman, S., Fookes, C., McCool, C.: Fruit detection in the wild: the impact of varying conditions and cultivar. In: 2020 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8 (2020)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Jocher, G., et al.: ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements (2020). https://doi.org/10.5281/zenodo.4154370

  11. Kalampokas, T., Vrochidou, E., Papakostas, G.A., Pachidis, T., Kaburlasos, V.G.: Grape stem detection using regression convolutional neural networks. Comput. Electron. Agric. 186, 106220 (2021)

    Article  Google Scholar 

  12. Kgp, I.: Field capsicum dataset (2023). https://universe.roboflow.com/iit-kgp-knvbv/field-capsicum

  13. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  14. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. López-Barrios, J.D., Escobedo Cabello, J.A., Gómez-Espinosa, A., Montoya-Cavero, L.E.: Green sweet pepper fruit and peduncle detection using mask R-CNN in greenhouses. Appl. Sci. 13(10) (2023)

    Google Scholar 

  17. Luo, L., et al.: In-field pose estimation of grape clusters with combined point cloud segmentation and geometric analysis. Comput. Electron. Agric. 200, 107197 (2022)

    Article  Google Scholar 

  18. Morros, J.R., et al.: AI4Agriculture grape dataset (2021). https://doi.org/10.5281/zenodo.5660081

  19. People, C.P.: Peduncle segmentation dataset (2023). https://universe.roboflow.com/cmu-pepper-people/peduncle-segmentation

  20. Polić, M., Vuletić, J., Orsag, M.: Pepper to fall: a perception method for sweet pepper robotic harvesting. Intell. Serv. Robot. 15 (2022)

    Google Scholar 

  21. Qi, X., Dong, J., Lan, Y., Zhu, H.: Method for identifying litchi picking position based on YOLOv5 and PSPNet. Remote Sens. 14(9) (2022)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  23. Rong, J., Guanglin, D., Wang, P.: A peduncle detection method of tomato for autonomous harvesting. Complex Intell. Syst. 7 (2021)

    Google Scholar 

  24. Sa, I.: Deepfruits capsicum dataset (2021). https://universe.roboflow.com/inkyu-sa-e0c78/deepfruits-capsicum

  25. Sa, I., Lim, J.Y., Ahn, H.S., MacDonald, B.: deepNIR: datasets for generating synthetic NIR images and improved fruit detection system using deep learning techniques. Sensors 22(13) (2022). https://doi.org/10.3390/s22134721

  26. Santos, T., de Souza, L., dos Santos, A., Sandra, A.: Embrapa Wine Grape Instance Segmentation Dataset - Embrapa WGISD (2019). https://doi.org/10.5281/zenodo.3361736

  27. Smitt, C., Halstead, M., Zaenker, T., Bennewitz, M., McCool, C.: PATHoBot: a robot for glasshouse crop phenotyping and intervention. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2324–2330 (2021)

    Google Scholar 

  28. Sozzi, M., Cantalamessa, S., Cogato, A., Kayad, A., Marinello, F.: wGrapeUNIPD-DL: an open dataset for white grape bunch detection. Data Brief 43, 108466 (2022). https://doi.org/10.1016/j.dib.2022.108466

    Article  Google Scholar 

  29. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: segmenting objects by locations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_38

    Chapter  Google Scholar 

  30. Wang, X., Zhang, R., Kong, T., Li, L., Shen, C.: SOLOv2: dynamic and fast instance segmentation. In: Advances in Neural Information Processing Systems, vol. 33, pp. 17721–17732 (2020)

    Google Scholar 

  31. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Zampokas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zampokas, G., Mariolis, I., Giakoumis, D., Tzovaras, D. (2023). Residual Cascade CNN for Detection of Spatially Relevant Objects in Agriculture: The Grape-Stem Paradigm. In: Christensen, H.I., Corke, P., Detry, R., Weibel, JB., Vincze, M. (eds) Computer Vision Systems. ICVS 2023. Lecture Notes in Computer Science, vol 14253. Springer, Cham. https://doi.org/10.1007/978-3-031-44137-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44137-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44136-3

  • Online ISBN: 978-3-031-44137-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics