Skip to main content
Log in

Advancing Precision Agriculture: Enhanced Weed Detection Using the Optimized YOLOv8T Model

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Precision agriculture relies on effective weed management for high yields and crop quality. Deep learning (DL)-based techniques show potential for providing effective solutions. However, their practicality is sometimes limited by insufficient datasets. Our research has utilized a comprehensive instance-level annotated weed dataset derived from existing agricultural imagery to address this critical gap. This dataset encompasses various weed and crop species, with images featuring detailed bounding box annotations to mark individual instances. This refinement facilitates the application of advanced DL models by providing more granular, real-world training data. Utilizing this dataset, we extensively evaluated the latest object detection models, focusing on the YOLO series, including YOLOv7, YOLOv8 variants, and our newly proposed YOLOv8T model. Our findings reveal that the YOLOv8T model surpasses its predecessors, achieving a mean average precision (mAP) of 82.5%. This notable improvement underscores the model’s enhanced capability to accurately distinguish between crop and weed species. Moreover, our study delves into the impact of data augmentation techniques to mitigate class imbalance within the dataset, further elevating the YOLOv8T’s performance metrics. These techniques improved the mAP results and showed how DL models, especially the YOLOv8T, can improve weed detection systems in the field. Through rigorous testing and analysis, our research confirms the viability of the YOLOv8T model as a cornerstone for developing automatic, efficient, and scalable weed detection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chauhan, B.: Grand challenges in weed management. Front. Agron. 1, 3 (2019)

    Article  Google Scholar 

  2. Carrasco Cabrera, L.; Medina Pastor, P.; European Food Safety Authority (EFSA): The 2020 European union report on pesticide residues in food. EFSA J. 20(3), 07215 (2022)

    Google Scholar 

  3. Hu, K.; Wang, Z.; Coleman, G.; Bender, A.; Yao, T.; Zeng, S.; Song, D.; Schumann, A.; Walsh, M.: Deep learning techniques for in-crop weed recognition in large-scale grain production systems: a review. Precis. Agric. 25(1), 1–29 (2024)

    Article  Google Scholar 

  4. Heidari, A.; Navimipour, N.J.; Jamali, M.A.J.; Akbarpour, S.: A hybrid approach for latency and battery lifetime optimization in IoT devices through offloading and CNN learning. Sustain. Comput. Inf. Syst. 39, 100899 (2023)

    Google Scholar 

  5. Darbandi, M.; Haghgoo, S.; Hajiali, M.; Khabir, A.: Prediction and estimation of next demands of cloud users based on their comments in crm and previous usages. In: 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT), pp. 81–86. IEEE (2018)

  6. Lyu, H.-M.; Yin, Z.-Y.; Zhou, A.; Shen, S.-L.: Sensitivity analysis of typhoon-induced floods in coastal cities using improved ANP-GIS. Int. J. Disaster Risk Reduct. 104, 104344 (2024)

    Article  Google Scholar 

  7. Heidari, A.; Navimipour, N.J.; Otsuki, A.: Cloud-based non-destructive characterization. Non-Destruct. Mater. Charact. Methods 2024, 727–765 (2024)

    Google Scholar 

  8. Heidari, A.; Navimipour, N.J.; Dag, H.; Talebi, S.; Unal, M.: A novel blockchain-based deepfake detection method using federated and deep learning models. Cogn. Comput. 16, 1–19 (2024)

    Article  Google Scholar 

  9. Norozpour, S.; Darbandi, M.: Proposing new method for clustering and optimizing energy consumption in WSN. Talent Dev Excell 12 (2020)

  10. Zhou, X.-H.; Zhou, A.; Shen, S.-L.: Novel model for risk assessment of shield tunnelling in soil-rock mixed strata. Acta Geotech 1–13 (2024)

  11. Darbandi, M.: Proposing new intelligence algorithm for suggesting better services to cloud users based on Kalman filtering. J. Comput. Sci. Appl. 5(1), 11–16 (2017)

    Google Scholar 

  12. Darbandi, M.: Kalman filtering for estimation and prediction servers with lower traffic loads for transferring high-level processes in cloud computing. Int. J. Technol. Innov. Res. 23(1), 10–20 (2017)

    MathSciNet  Google Scholar 

  13. Darbandi, M.; Abedi, M.; Fard, S.; Nakhodchi, S.: Involving Kalman filter technique for increasing the reliability and efficiency of cloud computing. In: Proceedings of the International Conference on Scientific Computing (CSC), p. 1. The Steering Committee of The World Congress in Computer Science, Computer (2012)

  14. Ahmad, S.A.; Ahmed, H.U.; Rafiq, S.K.; Ahmad, D.A.: Machine learning approach for predicting compressive strength in foam concrete under varying mix designs and curing periods. Smart Constr. Sustain. Cities 1(1), 16 (2023)

    Article  Google Scholar 

  15. Rai, N.; Zhang, Y.; Ram, B.G.; Schumacher, L.; Yellavajjala, R.K.; Bajwa, S.; Sun, X.: Applications of deep learning in precision weed management: a review. Comput. Electron. Agric. 206, 107698 (2023)

    Article  Google Scholar 

  16. Corceiro, A.; Alibabaei, K.; Assunção, E.; Gaspar, P.D.; Pereira, N.: Methods for detecting and classifying weeds, diseases and fruits using AI to improve the sustainability of agricultural crops: a review. Processes 11(4), 1263 (2023)

    Article  Google Scholar 

  17. Karnati, M.; Sahu, G.; Gupta, A.; Seal, A.; Krejcar, O.: A pyramidal spatial-based feature attention network for schizophrenia detection using electroencephalography signals. IEEE Trans. Cogn. Dev. Syst. 16, 935–946 (2023)

    Article  Google Scholar 

  18. Karnati, M.; Seal, A.; Jaworek-Korjakowska, J.; Krejcar, O.: Facial expression recognition in-the-wild using blended feature attention network. IEEE Trans. Instrum. Meas. 72, 5026416 (2023)

    Article  Google Scholar 

  19. Shaban, W.M.; Yang, J.; Elbaz, K.; Xie, J.; Li, L.: Fuzzy-metaheuristic ensembles for predicting the compressive strength of brick aggregate concrete. Resour. Conserv. Recycl. 169, 105443 (2021)

    Article  Google Scholar 

  20. Nsiah, R.A.; Mantey, S.; Ziggah, Y.Y.: Building segmentation from UAV orthomosaics using unet-resnet-34 optimised with grey wolf optimisation algorithm. Smart Constr. Sustain. Cities 1(1), 21 (2023)

    Article  Google Scholar 

  21. Gallo, I.; Rehman, A.U.; Dehkordi, R.H.; Landro, N.; La Grassa, R.; Boschetti, M.: Deep object detection of crop weeds: Performance of yolov7 on a real case dataset from UAV images. Remote Sens. 15(2), 539 (2023)

    Article  Google Scholar 

  22. Moazzam, S.I.; Khan, U.S.; Qureshi, W.S.; Nawaz, T.; Kunwar, F.: Towards automated weed detection through two-stage semantic segmentation of tobacco and weed pixels in aerial imagery. Smart Agric. Technol. 4, 100142 (2023)

    Article  Google Scholar 

  23. Benchallal, F.; Hafiane, A.; Ragot, N.; Canals, R.: Convnext based semi-supervised approach with consistency regularization for weeds classification. Expert Syst. Appl. 239, 122222 (2024)

    Article  Google Scholar 

  24. Veeragandham, S.; Santhi, H.: Optimization enabled deep quantum neural network for weed classification and density estimation. Expert Syst. Appl. 243, 122679 (2024)

    Article  Google Scholar 

  25. Rahman, A.; Lu, Y.; Wang, H.: Performance evaluation of deep learning object detectors for weed detection for cotton. Smart Agric. Technol. 3, 100126 (2023)

    Article  Google Scholar 

  26. Ajayi, O.G.; Ashi, J.: Effect of varying training epochs of a faster region-based convolutional neural network on the accuracy of an automatic weed classification scheme. Smart Agric. Technol. 3, 100128 (2023)

    Article  Google Scholar 

  27. Ong, P.; Teo, K.S.; Sia, C.K.: Uav-based weed detection in Chinese cabbage using deep learning. Smart Agric. Technol. 4, 100181 (2023)

    Article  Google Scholar 

  28. Moazzam, S.I.; Nawaz, T.; Qureshi, W.S.; Khan, U.S.; Tiwana, M.I.: A w-shaped convolutional network for robust crop and weed classification in agriculture. Precis. Agric. 24(5), 2002–2018 (2023)

    Article  Google Scholar 

  29. Ajayi, O.G.; Ashi, J.; Guda, B.: Performance evaluation of yolo v5 model for automatic crop and weed classification on UAV images. Smart Agric. Technol. 5, 100231 (2023)

    Article  Google Scholar 

  30. Talaat, F.M.; ZainEldin, H.: An improved fire detection approach based on yolo-v8 for smart cities. Neural Comput. Appl. 35(28), 20939–20954 (2023)

    Article  Google Scholar 

  31. Yang, G.; Wang, J.; Nie, Z.; Yang, H.; Yu, S.: A lightweight yolov8 tomato detection algorithm combining feature enhancement and attention. Agronomy 13(7), 1824 (2023)

    Article  Google Scholar 

  32. Sportelli, M.; Apolo-Apolo, O.E.; Fontanelli, M.; Frasconi, C.; Raffaelli, M.; Peruzzi, A.; Perez-Ruiz, M.: Evaluation of yolo object detectors for weed detection in different turfgrass scenarios. Appl. Sci. 13(14), 8502 (2023)

    Article  Google Scholar 

  33. Xiao, B.; Nguyen, M.; Yan, W.Q.: Fruit ripeness identification using yolov8 model. Multimed. Tools Appl. 83(9), 28039–28056 (2024)

    Article  Google Scholar 

  34. Wu, H.; Wang, Y.; Zhao, P.; Qian, M.: Small-target weed-detection model based on yolo-v4 with improved backbone and neck structures. Precis. Agric. 24(6), 2149–2170 (2023)

    Article  Google Scholar 

  35. Wang, G.; Chen, Y.; An, P.; Hong, H.; Hu, J.; Huang, T.: Uav-yolov8: a small-object-detection model based on improved yolov8 for UAV aerial photography scenarios. Sensors 23(16), 7190 (2023)

    Article  Google Scholar 

  36. Olsen, A.; Konovalov, D.A.; Philippa, B.; Ridd, P.; Wood, J.C.; Johns, J.; Banks, W.; Girgenti, B.; Kenny, O.; Whinney, J.; et al.: Deepweeds: a multiclass weed species image dataset for deep learning. Sci. Rep. 9(1), 2058 (2019)

    Article  Google Scholar 

  37. Hasan, A.M.; Diepeveen, D.; Laga, H.; Jones, M.G.; Sohel, F.: Image patch-based deep learning approach for crop and weed recognition. Eco. Inform. 78, 102361 (2023)

    Article  Google Scholar 

  38. Espejo-Garcia, B.; Panoutsopoulos, H.; Anastasiou, E.; Rodríguez-Rigueiro, F.J.; Fountas, S.: Top-tuning on transformers and data augmentation transferring for boosting the performance of weed identification. Comput. Electron. Agric. 211, 108055 (2023)

  39. Wang, Y.; Zhang, S.; Dai, B.; Yang, S.; Song, H.: Fine-grained weed recognition using swin transformer and two-stage transfer learning. Front. Plant Sci. 14, 1134932 (2023)

    Article  Google Scholar 

  40. Duong, L.T.; Tran, T.B.; Le, N.H.; Ngo, V.M.; Nguyen, P.T.: Automatic detection of weeds: synergy between efficientnet and transfer learning to enhance the prediction accuracy. Soft. Comput. 28(6), 5029–5044 (2024)

    Article  Google Scholar 

  41. Hasan, A.M.; Diepeveen, D.; Laga, H.; Jones, M.G.; Sohel, F.: Object-level benchmark for deep learning-based detection and classification of weed species. Crop Prot. 177, 106561 (2024)

    Article  Google Scholar 

  42. Rai, N.; Sun, X.: Weedvision: a single-stage deep learning architecture to perform weed detection and segmentation using drone-acquired images. Comput. Electron. Agric. 219, 108792 (2024)

    Article  Google Scholar 

  43. Salazar-Gomez, A.; Darbyshire, M.; Gao, J.; Sklar, E.I.; Parsons, S.: Towards practical object detection for weed spraying in precision agriculture. arXiv preprint arXiv:2109.11048 (2021)

  44. Sudars, K.; Jasko, J.; Namatevs, I.; Ozola, L.; Badaukis, N.: Dataset of annotated food crops and weed images for robotic computer vision control. Data Brief 31, 105833 (2020)

    Article  Google Scholar 

  45. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B.: A review of yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)

    Article  Google Scholar 

  46. Heidari, A.; Jafari Navimipour, N.; Dag, H.; Unal, M.: Deepfake detection using deep learning methods: a systematic and comprehensive review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 14(2), 1520 (2024)

    Article  Google Scholar 

  47. Elbaz, K.; Shen, S.-L.; Zhou, A.; Yin, Z.-Y.; Lyu, H.-M.: Prediction of disc cutter life during shield tunneling with ai via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering 7(2), 238–251 (2021)

    Article  Google Scholar 

  48. Shen, S.-L.; Zhang, N.; Zhou, A.; Yin, Z.-Y.: Enhancement of neural networks with an alternative activation function tanhLU. Expert Syst. Appl. 199, 117181 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Vardhan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Vardhan, M. Advancing Precision Agriculture: Enhanced Weed Detection Using the Optimized YOLOv8T Model. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09419-2

Keywords