Abstract
Precision agriculture relies on effective weed management for high yields and crop quality. Deep learning (DL)-based techniques show potential for providing effective solutions. However, their practicality is sometimes limited by insufficient datasets. Our research has utilized a comprehensive instance-level annotated weed dataset derived from existing agricultural imagery to address this critical gap. This dataset encompasses various weed and crop species, with images featuring detailed bounding box annotations to mark individual instances. This refinement facilitates the application of advanced DL models by providing more granular, real-world training data. Utilizing this dataset, we extensively evaluated the latest object detection models, focusing on the YOLO series, including YOLOv7, YOLOv8 variants, and our newly proposed YOLOv8T model. Our findings reveal that the YOLOv8T model surpasses its predecessors, achieving a mean average precision (mAP) of 82.5%. This notable improvement underscores the model’s enhanced capability to accurately distinguish between crop and weed species. Moreover, our study delves into the impact of data augmentation techniques to mitigate class imbalance within the dataset, further elevating the YOLOv8T’s performance metrics. These techniques improved the mAP results and showed how DL models, especially the YOLOv8T, can improve weed detection systems in the field. Through rigorous testing and analysis, our research confirms the viability of the YOLOv8T model as a cornerstone for developing automatic, efficient, and scalable weed detection systems.








Similar content being viewed by others
References
Chauhan, B.: Grand challenges in weed management. Front. Agron. 1, 3 (2019)
Carrasco Cabrera, L.; Medina Pastor, P.; European Food Safety Authority (EFSA): The 2020 European union report on pesticide residues in food. EFSA J. 20(3), 07215 (2022)
Hu, K.; Wang, Z.; Coleman, G.; Bender, A.; Yao, T.; Zeng, S.; Song, D.; Schumann, A.; Walsh, M.: Deep learning techniques for in-crop weed recognition in large-scale grain production systems: a review. Precis. Agric. 25(1), 1–29 (2024)
Heidari, A.; Navimipour, N.J.; Jamali, M.A.J.; Akbarpour, S.: A hybrid approach for latency and battery lifetime optimization in IoT devices through offloading and CNN learning. Sustain. Comput. Inf. Syst. 39, 100899 (2023)
Darbandi, M.; Haghgoo, S.; Hajiali, M.; Khabir, A.: Prediction and estimation of next demands of cloud users based on their comments in crm and previous usages. In: 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT), pp. 81–86. IEEE (2018)
Lyu, H.-M.; Yin, Z.-Y.; Zhou, A.; Shen, S.-L.: Sensitivity analysis of typhoon-induced floods in coastal cities using improved ANP-GIS. Int. J. Disaster Risk Reduct. 104, 104344 (2024)
Heidari, A.; Navimipour, N.J.; Otsuki, A.: Cloud-based non-destructive characterization. Non-Destruct. Mater. Charact. Methods 2024, 727–765 (2024)
Heidari, A.; Navimipour, N.J.; Dag, H.; Talebi, S.; Unal, M.: A novel blockchain-based deepfake detection method using federated and deep learning models. Cogn. Comput. 16, 1–19 (2024)
Norozpour, S.; Darbandi, M.: Proposing new method for clustering and optimizing energy consumption in WSN. Talent Dev Excell 12 (2020)
Zhou, X.-H.; Zhou, A.; Shen, S.-L.: Novel model for risk assessment of shield tunnelling in soil-rock mixed strata. Acta Geotech 1–13 (2024)
Darbandi, M.: Proposing new intelligence algorithm for suggesting better services to cloud users based on Kalman filtering. J. Comput. Sci. Appl. 5(1), 11–16 (2017)
Darbandi, M.: Kalman filtering for estimation and prediction servers with lower traffic loads for transferring high-level processes in cloud computing. Int. J. Technol. Innov. Res. 23(1), 10–20 (2017)
Darbandi, M.; Abedi, M.; Fard, S.; Nakhodchi, S.: Involving Kalman filter technique for increasing the reliability and efficiency of cloud computing. In: Proceedings of the International Conference on Scientific Computing (CSC), p. 1. The Steering Committee of The World Congress in Computer Science, Computer (2012)
Ahmad, S.A.; Ahmed, H.U.; Rafiq, S.K.; Ahmad, D.A.: Machine learning approach for predicting compressive strength in foam concrete under varying mix designs and curing periods. Smart Constr. Sustain. Cities 1(1), 16 (2023)
Rai, N.; Zhang, Y.; Ram, B.G.; Schumacher, L.; Yellavajjala, R.K.; Bajwa, S.; Sun, X.: Applications of deep learning in precision weed management: a review. Comput. Electron. Agric. 206, 107698 (2023)
Corceiro, A.; Alibabaei, K.; Assunção, E.; Gaspar, P.D.; Pereira, N.: Methods for detecting and classifying weeds, diseases and fruits using AI to improve the sustainability of agricultural crops: a review. Processes 11(4), 1263 (2023)
Karnati, M.; Sahu, G.; Gupta, A.; Seal, A.; Krejcar, O.: A pyramidal spatial-based feature attention network for schizophrenia detection using electroencephalography signals. IEEE Trans. Cogn. Dev. Syst. 16, 935–946 (2023)
Karnati, M.; Seal, A.; Jaworek-Korjakowska, J.; Krejcar, O.: Facial expression recognition in-the-wild using blended feature attention network. IEEE Trans. Instrum. Meas. 72, 5026416 (2023)
Shaban, W.M.; Yang, J.; Elbaz, K.; Xie, J.; Li, L.: Fuzzy-metaheuristic ensembles for predicting the compressive strength of brick aggregate concrete. Resour. Conserv. Recycl. 169, 105443 (2021)
Nsiah, R.A.; Mantey, S.; Ziggah, Y.Y.: Building segmentation from UAV orthomosaics using unet-resnet-34 optimised with grey wolf optimisation algorithm. Smart Constr. Sustain. Cities 1(1), 21 (2023)
Gallo, I.; Rehman, A.U.; Dehkordi, R.H.; Landro, N.; La Grassa, R.; Boschetti, M.: Deep object detection of crop weeds: Performance of yolov7 on a real case dataset from UAV images. Remote Sens. 15(2), 539 (2023)
Moazzam, S.I.; Khan, U.S.; Qureshi, W.S.; Nawaz, T.; Kunwar, F.: Towards automated weed detection through two-stage semantic segmentation of tobacco and weed pixels in aerial imagery. Smart Agric. Technol. 4, 100142 (2023)
Benchallal, F.; Hafiane, A.; Ragot, N.; Canals, R.: Convnext based semi-supervised approach with consistency regularization for weeds classification. Expert Syst. Appl. 239, 122222 (2024)
Veeragandham, S.; Santhi, H.: Optimization enabled deep quantum neural network for weed classification and density estimation. Expert Syst. Appl. 243, 122679 (2024)
Rahman, A.; Lu, Y.; Wang, H.: Performance evaluation of deep learning object detectors for weed detection for cotton. Smart Agric. Technol. 3, 100126 (2023)
Ajayi, O.G.; Ashi, J.: Effect of varying training epochs of a faster region-based convolutional neural network on the accuracy of an automatic weed classification scheme. Smart Agric. Technol. 3, 100128 (2023)
Ong, P.; Teo, K.S.; Sia, C.K.: Uav-based weed detection in Chinese cabbage using deep learning. Smart Agric. Technol. 4, 100181 (2023)
Moazzam, S.I.; Nawaz, T.; Qureshi, W.S.; Khan, U.S.; Tiwana, M.I.: A w-shaped convolutional network for robust crop and weed classification in agriculture. Precis. Agric. 24(5), 2002–2018 (2023)
Ajayi, O.G.; Ashi, J.; Guda, B.: Performance evaluation of yolo v5 model for automatic crop and weed classification on UAV images. Smart Agric. Technol. 5, 100231 (2023)
Talaat, F.M.; ZainEldin, H.: An improved fire detection approach based on yolo-v8 for smart cities. Neural Comput. Appl. 35(28), 20939–20954 (2023)
Yang, G.; Wang, J.; Nie, Z.; Yang, H.; Yu, S.: A lightweight yolov8 tomato detection algorithm combining feature enhancement and attention. Agronomy 13(7), 1824 (2023)
Sportelli, M.; Apolo-Apolo, O.E.; Fontanelli, M.; Frasconi, C.; Raffaelli, M.; Peruzzi, A.; Perez-Ruiz, M.: Evaluation of yolo object detectors for weed detection in different turfgrass scenarios. Appl. Sci. 13(14), 8502 (2023)
Xiao, B.; Nguyen, M.; Yan, W.Q.: Fruit ripeness identification using yolov8 model. Multimed. Tools Appl. 83(9), 28039–28056 (2024)
Wu, H.; Wang, Y.; Zhao, P.; Qian, M.: Small-target weed-detection model based on yolo-v4 with improved backbone and neck structures. Precis. Agric. 24(6), 2149–2170 (2023)
Wang, G.; Chen, Y.; An, P.; Hong, H.; Hu, J.; Huang, T.: Uav-yolov8: a small-object-detection model based on improved yolov8 for UAV aerial photography scenarios. Sensors 23(16), 7190 (2023)
Olsen, A.; Konovalov, D.A.; Philippa, B.; Ridd, P.; Wood, J.C.; Johns, J.; Banks, W.; Girgenti, B.; Kenny, O.; Whinney, J.; et al.: Deepweeds: a multiclass weed species image dataset for deep learning. Sci. Rep. 9(1), 2058 (2019)
Hasan, A.M.; Diepeveen, D.; Laga, H.; Jones, M.G.; Sohel, F.: Image patch-based deep learning approach for crop and weed recognition. Eco. Inform. 78, 102361 (2023)
Espejo-Garcia, B.; Panoutsopoulos, H.; Anastasiou, E.; Rodríguez-Rigueiro, F.J.; Fountas, S.: Top-tuning on transformers and data augmentation transferring for boosting the performance of weed identification. Comput. Electron. Agric. 211, 108055 (2023)
Wang, Y.; Zhang, S.; Dai, B.; Yang, S.; Song, H.: Fine-grained weed recognition using swin transformer and two-stage transfer learning. Front. Plant Sci. 14, 1134932 (2023)
Duong, L.T.; Tran, T.B.; Le, N.H.; Ngo, V.M.; Nguyen, P.T.: Automatic detection of weeds: synergy between efficientnet and transfer learning to enhance the prediction accuracy. Soft. Comput. 28(6), 5029–5044 (2024)
Hasan, A.M.; Diepeveen, D.; Laga, H.; Jones, M.G.; Sohel, F.: Object-level benchmark for deep learning-based detection and classification of weed species. Crop Prot. 177, 106561 (2024)
Rai, N.; Sun, X.: Weedvision: a single-stage deep learning architecture to perform weed detection and segmentation using drone-acquired images. Comput. Electron. Agric. 219, 108792 (2024)
Salazar-Gomez, A.; Darbyshire, M.; Gao, J.; Sklar, E.I.; Parsons, S.: Towards practical object detection for weed spraying in precision agriculture. arXiv preprint arXiv:2109.11048 (2021)
Sudars, K.; Jasko, J.; Namatevs, I.; Ozola, L.; Badaukis, N.: Dataset of annotated food crops and weed images for robotic computer vision control. Data Brief 31, 105833 (2020)
Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B.: A review of yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)
Heidari, A.; Jafari Navimipour, N.; Dag, H.; Unal, M.: Deepfake detection using deep learning methods: a systematic and comprehensive review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 14(2), 1520 (2024)
Elbaz, K.; Shen, S.-L.; Zhou, A.; Yin, Z.-Y.; Lyu, H.-M.: Prediction of disc cutter life during shield tunneling with ai via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering 7(2), 238–251 (2021)
Shen, S.-L.; Zhang, N.; Zhou, A.; Yin, Z.-Y.: Enhancement of neural networks with an alternative activation function tanhLU. Expert Syst. Appl. 199, 117181 (2022)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sharma, S., Vardhan, M. Advancing Precision Agriculture: Enhanced Weed Detection Using the Optimized YOLOv8T Model. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09419-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13369-024-09419-2