Skip to main content

State Identification and Verification with Satisfaction

  • Chapter
  • First Online:
A Journey from Process Algebra via Timed Automata to Model Learning

Abstract

We use SAT-solving to construct adaptive distinguishing sequences and unique input/output sequences for finite state machines in the flavour of Mealy machines. These sequences solve the state identification and state verification problems respectively. Preliminary experiments evaluate our implementation and show that this approach via SAT-solving works well and is able to find many short sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Lee and Yannakakis wrote two papers with similar titles [LY94, LY96]. The one from 1994 contains the polytime ADS algorithm in detail and the one from 1996 contains a survey with related problems, results (such as bounds), and applications.

  2. 2.

    We use \(\mathfrak {F}\)raktur letters to distinguish variables in our encoding, such as \(\mathfrak {a}\), from variables ranging over sets used as indices, such as a symbol \(a \in I\). The symbols are chosen so that \(\mathfrak {a}\) stands for alphabet, \(\mathfrak {s}\) stands for state, \(\mathfrak {o}\) stands for output and \(\mathfrak {d}\) stands for difference.

References

  1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence IJCAI, pp. 399–404 (2009)

    Google Scholar 

  2. Biere, A., Heule, M., van Maaren, H. (eds.).: Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)

    Google Scholar 

  3. Eén, N., Sörensson, N.: An extensible sat-solver. In: Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003. Selected Revised Papers, volume 2919 of LNCS, pp. 502–518. Springer (2003). https://doi.org/10.1007/978-3-540-24605-337

  4. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

    Article  Google Scholar 

  5. Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K., Somorovsky, J.: Analysis of DTLS implementations using protocol state fuzzing. In: USENIX Security Symposium, pp. 2523–2540. USENIX Association (2020)

    Google Scholar 

  6. Geuvers, H., Jacobs, B.: Relating apartness and bisimulation. Logical Meth. Comput. Sci. 17(3) (2021). https://doi.org/10.46298/lmcs-17(3:15)2021

  7. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for prototyping with SAT oracles. In: SAT, volume 10929 of LNCS, pp. 428–437 (2018). https://doi.org/10.1007/978-3-319-94144-826

  8. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification. IEEE Trans. Comput. 43(3), 306–320 (1994). https://doi.org/10.1109/12.272431

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - a survey. Proc. IEEE 84, 1090–1123 (1996). https://doi.org/10.1109/5.533956

    Article  Google Scholar 

  10. Naik, K.: Efficient computation of unique input/output sequences in finite-state machines. IEEE/ACM Trans. Netw. 5(4), 585–599 (1997)

    Article  Google Scholar 

  11. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol. 11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22348-9_23

    Chapter  Google Scholar 

  12. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73

    Chapter  MATH  Google Scholar 

  13. Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all pairs of states. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 181–193. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9_14

    Chapter  Google Scholar 

  14. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata learning to embedded control software. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_5

    Chapter  Google Scholar 

  15. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication via active automata learning. In: ICST, pp. 276–287. IEEE Computer Society (2017)

    Google Scholar 

  16. Vaandrager, F., Garhewal, B., Rot, B., Wißmann, T.: A new approach for active automata learning based on apartness. In: Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS: Lecture Notes in Computer Science. Springer 04, 2022 (2022). https://doi.org/10.1007/978-3-030-99524-9_12

Download references

Acknowledgements

We would like to thank Alexander Fedotov for providing an implementation of Naik’s algorithm in Java. We are grateful for the many suggestions by the referees that helped improving the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Moerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moerman, J., Wißmann, T. (2022). State Identification and Verification with Satisfaction. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds) A Journey from Process Algebra via Timed Automata to Model Learning . Lecture Notes in Computer Science, vol 13560. Springer, Cham. https://doi.org/10.1007/978-3-031-15629-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15629-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15628-1

  • Online ISBN: 978-3-031-15629-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics