Abstract
Using an adaptation of state-of-the-art algorithms for black-box automata learning, as implemented in the LearnLib tool, we succeeded to learn a model of the Engine Status Manager (ESM), a software component that is used in printers and copiers of Océ. The main challenge that we encountered was that LearnLib, although effective in constructing hypothesis models, was unable to find counterexamples for some hypotheses. In fact, none of the existing FSM-based conformance testing methods that we tried worked for this case study. We therefore implemented an extension of the algorithm of Lee and Yannakakis for computing an adaptive distinguishing sequence. Even when an adaptive distinguishing sequence does not exist, Lee and Yannakakis’ algorithm produces an adaptive sequence that ‘almost’ identifies states. In combination with a standard algorithm for computing separating sequences for pairs of states, we managed to verify states with on average 3 test queries. Altogether, we needed around 60 million queries to learn a model of the ESM with 77 inputs and 3.410 states. We also constructed a model directly from the ESM software and established equivalence with the learned model. To the best of our knowledge, this is the first paper in which active automata learning has been applied to industrial control software.
This work was supported by STW project 11763 Integrating Testing And Learning of Interface Automata (ITALIA) and by the DFG/NWO Bilateral Research Programme ROCKS. An early version of this paper appeared as [35].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aarts, F.: Tomte: bridging the gap between active learning and real-world systems. Ph.D. thesis, Radboud University Nijmegen, October 2014
Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.: Generating models of infinite-state communication protocols using regular inference with abstraction. Formal Methods Syst. Des. 46(1), 1–41 (2015)
Aarts, F., Kuppens, H., Tretmans, G., Vaandrager, F., Verwer, S.: Improving active mealy machine learning for protocol conformance testing. Mach. Learn. 96(1–2), 189–224 (2014)
Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)
Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating networks. In: ICWSM. The AAAI Press (2009)
Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society (2006)
Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)
Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. J. Log. Algebr. Meth. Program. 84(1), 54–66 (2015)
Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: ACM Conference on Computer and Communications Security, pp. 426–439. ACM (2010)
Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)
David, A., Oliver Möller, M., Yi, W.: Formal verification of UML statecharts with real-time extensions. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 218–232. Springer, Heidelberg (2002)
Eshuis, R., Jansen, D.N., Wieringa, R.: Requirements-level semantics and model checking of object-oriented statecharts. Requir. Eng. 7(4), 243–263 (2002)
Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 78–93. Springer, Heidelberg (2014)
Fujiwara, S., Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)
Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)
Graaf, B., van Deursen, A.: Model-driven consistency checking of behavioural specifications. In: MOMPES, pp. 115–126. IEEE Computer Society (2007)
Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular system verification by inference, testing and reachability analysis. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 216–233. Springer, Heidelberg (2008)
Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos, O.M.: Automated verification of executable UML models. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 225–250. Springer, Heidelberg (2011)
de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge, UK (2010)
Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)
Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011)
Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In: Hunt Jr, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003)
Krenn, W., Schlick, R., Aichernig, B.K.: Mapping UML to labeled transition systems for test-case generation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 186–207. Springer, Heidelberg (2010)
Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P., Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset for MDA. In: Model-Driven Architecture, p. 1 (2009)
Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification. IEEE Trans. Comput. 43(3), 306–320 (1994)
Leucker, M.: Learning meets verification. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151. Springer, Heidelberg (2007)
Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based on learning parameterized I/O models. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer, Heidelberg (2006)
Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Demonstrating learning of register automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 466–471. Springer, Heidelberg (2012)
Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)
Object Management Group (OMG). Unified modeling language specification: Version 2, revised final adopted specification (2004). http://www.uml.org/#UML2.0
Ploeger, B.: Analysis of concurrent state machines in embedded copier software. Master’s thesis, Eindhoven University of Technology, August 2005
Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. STTT 11(4), 307–324 (2009)
Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. STTT 11(5), 393–407 (2009)
Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-oriented Modeling. Wiley, New York (1994)
Smeenk, W.: Applying automata learning to complex industrial software. Master thesis, Radboud University Nijmegen, September 2012
Smetsers, R., Volpato, M., Vaandrager, F.W., Verwer, S.: Bigger is not always better: on the quality of hypotheses in active automata learning. In: ICGI, JMLR Proceedings, vol. 34, pp. 167–181 (2014)
Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)
Vasilevskii, M.P.: Failure diagnosis of automata. Cybern. Syst. Anal. 9(4), 653–665 (1973)
Acknowledgments
We thank Lou Somers for suggesting the ESM case study and for his support of our research. Fides Aarts and Harco Kuppens helped us with the use of LearnLib and CADP, and Jan Tretmans gave useful feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N. (2015). Applying Automata Learning to Embedded Control Software. In: Butler, M., Conchon, S., Zaïdi, F. (eds) Formal Methods and Software Engineering. ICFEM 2015. Lecture Notes in Computer Science(), vol 9407. Springer, Cham. https://doi.org/10.1007/978-3-319-25423-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-25423-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25422-7
Online ISBN: 978-3-319-25423-4
eBook Packages: Computer ScienceComputer Science (R0)