Abstract
Querying databases to search for the best objects matching user’s preferences is a fundamental problem in multi-criteria databases. The skyline queries are an important tool for solving such problems. Based on the concept of Pareto dominance, the skyline process extracts the most interesting (not dominated in Pareto sense) objects from a set of data. However, this process may lead to a huge skyline problem as the size of the results of skyline grows with the number of criteria (dimensions). In this case, the skyline is less informative for the end-users. In this paper, we propose an efficient approach to refine the skyline and reduce its size, using some advanced techniques borrowed from the formal concepts analysis. The basic idea is to build the fuzzy lattice of skyline objects based on the satisfaction rate of concepts. Then, the refined skyline is given by the concept that contains k objects (where k is a user-defined parameter) and has the great satisfaction rate w.r.t. the target concept. Experimental study shows the efficiency and the effectiveness of our approach compared to the naive approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbaci, K., Hadjali, A., Lietard, L., Rocacher, D.: A linguistic quantifier-based approach for skyline refinement. In: Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS, Edmonton, Alberta, Canada, 24–28 June, pp. 321–326 (2013)
Balke, W., Güntzer, U., Lofi, C.: User interaction support for incremental refinement of preference-based queries. In: Proceedings of the First International Conference on Research Challenges in Information Science (RCIS), Ouarzazate, Morocco, 23–26 April, pp. 209–220 (2007)
Belohlávek, R.: Fuzzy Galois connections. Math. Log. Q. 45, 497–504 (1999)
Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2–6 April, pp. 421–430 (2001)
Chan, C.Y., Jagadish, H.V., Tan, K., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: Proceedings of the International Conference on Management of Data (ACM SIGMOD), Chicago, Illinois, USA, 27–29 June, pp. 503–514 (2006)
Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. SIGMOD Rec. 42(3), 6–18 (2013)
Endres, M., Kießling, W.: Parallel skyline computation exploiting the lattice structure. J. Database Manag. 26(4), 18–43 (2015)
Goncalves, M., Tineo, L.: Fuzzy dominance skyline queries. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 469–478. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74469-6_46
Gulzar, Y., Alwan, A.A., Salleh, N., Shaikhli, I.F.A.: Processing skyline queries in incomplete database: issues, challenges and future trends. JCS 13(11), 647–658 (2017)
Haddache, M., Belkasmi, D., Hadjali, A., Azzoune, H.: An outranking-based approach for skyline refinement. In: 8th IEEE International Conference on Intelligent Systems, IS 2016, Sofia, Bulgaria, 4–6 September 2016, pp. 333–344 (2016)
Hadjali, A., Pivert, O., Prade, H.: Possibilistic contextual skylines with incomplete preferences. In: Second International Conference of Soft Computing and Pattern Recognition, (SoCPaR), Cergy Pontoise/Paris, France, 7–10 December, pp. 57–62 (2010)
Hadjali, A., Pivert, O., Prade, H.: On different types of fuzzy skylines. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 581–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21916-0_62
Mahmoud, H., Habiba, D., Hadjali, A.: A strong-dominance-based approach for refining the skyline. In: Proceedings of the 12th International Symposium on Programming and Systems (ISPS), Algiers, Algeria, 28–30 April, pp. 1–8 (2015)
Koltun, V., Papadimitriou, C.H.: Approximately dominating representatives. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 204–214. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30570-5_14
Lee, J., Hwang, S.: Scalable skyline computation using a balanced pivot selection technique. Inf. Syst. 39, 1–21 (2014)
Lee, J., You, G., Hwang, S.: Telescope: zooming to interesting skylines. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 539–550. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71703-4_46
Loyer, Y., Sadoun, I., Zeitouni, K.: Personalized progressive filtering of skyline queries in high dimensional spaces. In: Proceedings of the 17th International Conference on Database Engineering & Applications Symposium (IDEAS), Barcelona, Spain, 9–11 October, pp. 186–191 (2013)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In Proceedings of the International Conference on Management of Data (ACM SIGMOD), San Diego, California, USA, 9–12 June, pp. 467–478 (2003)
Raja, H., Djouadi, Y.: Projection extensionnelle pour la reduction d’un treillis de concepts formels flous. In: 22emes rencontres francophones sur la Logique Floue et ses Applications, LFA 2013, Reims, France, 10–11 octobre 2013 (2013)
Sarma, A.D., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.: Representative skylines using threshold-based preference distributions. In: Proceedings of the 27th International Conference on Data Engineering (ICDE), Hannover, Germany, 11–16 April, pp. 387–398 (2011)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. AISC, vol. 83, pp. 445–470. Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-009-7798-3_15
Yin, B., Wei, X., Liu, Y.: Finding the informative and concise set through approximate skyline queries. Expert Syst. Appl. 119, 289–310 (2019)
Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-dimensional data. In: Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB), University of Vienna, Austria, 23–27 September, pp. 483–494 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Haddache, M., Hadjali, A., Azzoune, H. (2019). Reducing Skyline Query Results: An Approach Based on Fuzzy Satisfaction of Concepts. In: Cuzzocrea, A., Greco, S., Larsen, H., Saccà, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2019. Lecture Notes in Computer Science(), vol 11529. Springer, Cham. https://doi.org/10.1007/978-3-030-27629-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-27629-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27628-7
Online ISBN: 978-3-030-27629-4
eBook Packages: Computer ScienceComputer Science (R0)