Abstract
Skyline queries constitute an appropriate tool that can help users to make intelligent decisions in the presence of multidimensional data when different, and often contradictory criteria are to be taken into account. Based on the concept of Pareto dominance, the skyline process extracts the most interesting (not dominated in sense of Pareto) objects from a set of data. However, this process often leads to a huge skyline, which is less informative for the end-users. In this paper, we propose an efficient approach to refine the skyline and reduce its size, using the principle of the formal concepts analysis. The basic idea is to build a formal concept lattice for skyline objects based on the minimal distance between each concept and the target concept. We show that the refined skyline is given by the concept that contains k objects (where k is a user-defined parameter) and has the minimal distance to the target concept. A set of experiments are conducted to demonstrate the effectiveness and efficiency of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbaci, K., Hadjali, A., Lietard, L., Rocacher, D.: A linguistic quantifier-based approach for skyline refinement. In: Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS, 24–28 June, Edmonton, Alberta, Canada, pp. 321–326 (2013)
Balke, W., Guntzer, U., Lofi, C.: User interaction support for incremental refinement of preference-based queries. In: Proceedings of the First Inter. Conference on Research Challenges in Information Science (RCIS), 23–26 April, Ouarzazate, Morocco, pp. 209–220 (2007)
Belohlávek, R.: Fuzzy galois connections. Math. Log. Q. 45, 497–504 (1999)
B\(\ddot{o}\)rzs\(\ddot{o}\)nyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, 2–6 April, Heidelberg, Germany, pp. 421–430 (2001)
Burusco, A., Fuentes-González, R.: The study of the l-fuzzy concept lattice. Mathware Soft Comput. 3(1), 208–209 (1994)
Chan, C.Y., Jagadish, H.V., Tan, K., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: Proceedings of the International Conference on Management of Data (ACM SIGMOD), 27–29 June, Chicago, Illinois, USA, pp. 503–514 (2006)
Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_30
Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. SIGMOD Rec. 42(3), 6–18 (2013)
Elmi, S., Tobji, M.A.B., Hadjali, A., Yaghlane, B.B.: Selecting skyline stars over uncertain databases: semantics and refining methods in the evidence theory setting. Appl. Soft Comput. 57, 88–101 (2017)
Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2
Goncalves, M., Tineo, L.: Fuzzy dominance skyline queries. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 469–478. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74469-6_46
Gulzar, Y., Alwan, A.A., Salleh, N., Shaikhli, I.F.A.: Processing skyline queries in incomplete database: issues, challenges and future trends. JCS 13(11), 647–658 (2017)
Haddache, M., Belkasmi, D., Hadjali, A., Azzoune, H.: An outranking-based approach for skyline refinement. In: 8th IEEE International Conference on Intelligent Systems, IS 2016, 4–6 September 2016, Sofia, Bulgaria, pp. 333–344 (2016)
Hadjali, A., Pivert, O., Prade, H.: Possibilistic contextual skylines with incomplete preferences. In: Second International Conference of Soft Computing and Pattern Recognition, (SoCPaR), 7–10 December, Cergy Pontoise/Paris, France, pp. 57–62 (2010)
Hadjali, A., Pivert, O., Prade, H.: On different types of fuzzy skylines. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 581–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21916-0_62
Hamiche, M., Hadjali, A., Drias, H.: A strong-dominance-based approach for refining the skyline. In: Proceedings of the 12th International Symposium on Programming and Systems (ISPS), 28–30 April, Algiers, Algeria, pp. 1–8 (2015)
Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incomplete data. In: Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, 7–12 April 2008, Canc\(\acute{u}\)n, M\(\acute{e}\)xico, pp. 555–565 (2008)
Koltun, V., Papadimitriou, C.H.: Approximately dominating representatives. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 204–214. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30570-5_14
Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Data Bases (VLDB), 20–23 August, Hong Kong, China, pp. 275–286 (2002)
Lee, J., Hwang, S.: Scalable skyline computation using a balanced pivot selection technique. Inf. Syst. 39, 1–21 (2014)
Lee, J., You, G., Hwang, S.: Telescope: zooming to interesting skylines. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 539–550. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71703-4_46
Loyer, Y., Sadoun, I., Zeitouni, K.: Personalized progressive filtering of skyline queries in high dimensional spaces. In: Proceedings of the 17th International Conference on Database Engineering Applications Symposium (IDEAS), 09–11 October, Barcelona, Spain, pp. 186–191 (2013)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the International Conference on Management of Data (ACM SIGMOD), 9–12 June, San Diego, California, USA, pp. 467–478 (2003)
Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, 23–27 September, Austria, pp. 15–6 (2007)
Santiago, A., et al.: A survey of decomposition methods for multi-objective optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. SCI, vol. 547, pp. 453–465. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05170-3_31
Sarma, A.D., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.J.: Representative skylines using threshold-based preference distributions. In: Proceedings of the 27th International Conference on Data Engineering, (ICDE), 11–16 April, Hannover, Germany, pp. 387–398 (2011)
Tan, K., Eng, P., Ooi, B.C.: Efficient progressive skyline computation. In: Proceedings of 27th International Conference on Very Large Data Bases (VLDB), 11–14 September, Roma, Italy (2001)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Springer, Heidelberg (1982). https://doi.org/10.1007/978-94-009-7798-3_15
Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-dimensional data. In: Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB), 23–27 September, University of Vienna, Austria, pp. 483–494 (2007)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Haddache, M., Hadjali, A., Azzoune, H. (2019). A Formal-Concept-Lattice Driven Approach for Skyline Refinement. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science(), vol 11606. Springer, Cham. https://doi.org/10.1007/978-3-030-22999-3_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-22999-3_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22998-6
Online ISBN: 978-3-030-22999-3
eBook Packages: Computer ScienceComputer Science (R0)