Skip to content

This repository is designed to train, evaluate, and deploy CLIP model for image-text processing. It includes modular components for data processing, model training, experiment tracking with MLflow, API deployment with FlaskAPI, and CI/CD automation using Jenkins and Docker.

Notifications You must be signed in to change notification settings

uddithmachiraju/clip-mlops-pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

The CLIP-MLOps-Pipeline is a Machine Learning Operations (MLOps) pipeline designed to train, evaluate, and deploy CLIP-based models for image-text processing. It includes modular components for data processing, model training, experiment tracking with MLflow, API deployment with FlaskAPI, and CI/CD automation using Jenkins and Docker.

Features

Modular Design: Organized structure for models, data, training, and testing.

MLflow Tracking: Tracks model metrics and versioning.

Dockerized Deployment: API and training environments are containerized.

CI/CD Integration: Automated pipeline with Jenkins for testing and deployment.

FlaskAPI for Model Serving: Provides an efficient API for inference.

Project Structure

πŸ“¦ CLIP-MLOps-Pipeline
β”œβ”€β”€ πŸ“‚ src/                     
β”‚   β”œβ”€β”€ πŸ“‚ models/              
β”‚   β”‚   β”œβ”€β”€ image_encoder.py
β”‚   β”‚   β”œβ”€β”€ text_encoder.py
β”‚   β”‚   β”œβ”€β”€ transformer_encoder.py
β”‚   β”‚   β”œβ”€β”€ attn_head.py
β”‚   β”‚   β”œβ”€β”€ pos_embeds.py
β”‚   β”‚   β”œβ”€β”€ model.py
β”‚   β”œβ”€β”€ πŸ“‚ data/                
β”‚   β”‚   β”œβ”€β”€ dataset.py
β”‚   β”‚   β”œβ”€β”€ parameters.json
β”‚   β”œβ”€β”€ πŸ“‚ training/            
β”‚   β”‚   β”œβ”€β”€ train.py
β”‚   β”‚   β”œβ”€β”€ test.py
β”‚   β”œβ”€β”€ πŸ“‚ api/                 
β”‚   β”‚   β”œβ”€β”€ main.py             
β”‚   β”‚   β”œβ”€β”€ Dockerfile          
β”‚   β”‚   β”œβ”€β”€ requirements.txt
β”‚   β”œβ”€β”€ πŸ“‚ tests/               
β”‚   β”‚   β”œβ”€β”€ test_model.py
β”‚   β”‚   β”œβ”€β”€ test_api.py
β”œβ”€β”€ πŸ“‚ mlflow/                  
β”‚   β”œβ”€β”€ tracking.py           
β”œβ”€β”€ πŸ“‚ docker/
β”‚   β”œβ”€β”€ Dockerfile
β”œβ”€β”€ πŸ“‚ ci-cd/
β”‚   β”œβ”€β”€ Jenkinsfile
β”œβ”€β”€ README.md
β”œβ”€β”€ requirements.txt 
β”œβ”€β”€ .gitignore

About

This repository is designed to train, evaluate, and deploy CLIP model for image-text processing. It includes modular components for data processing, model training, experiment tracking with MLflow, API deployment with FlaskAPI, and CI/CD automation using Jenkins and Docker.

Topics

Resources

Stars

Watchers

Forks