A library for scientific machine learning and physics-informed learning
-
Updated
Apr 8, 2025 - Python
A library for scientific machine learning and physics-informed learning
Implementation of the paper "Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism" [AAAI-MLPS 2021]
physics-informed neural network for elastodynamics problem
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Generative Pre-Trained Physics-Informed Neural Networks Implementation
Source code of 'Deep transfer operator learning for partial differential equations under conditional shift'.
Physics-informed deep super-resolution of spatiotemporal data
NVFi in PyTorch (NeurIPS 2023)
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs
Source code for Zero-Shot Wireless Indoor Navigation through Physics-Informed Reinforcement Learning
Code for the NeurIPS 2021 paper "Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features"
Official Implementation of Integrating Physics-Informed Vectors for Improved Wind Speed Forecasting with Neural Networks
Official imprementation of the paper "A general deep learning method for computing molecular parameters of viscoelastic constitutive model by solving an inverse problem"
PINEURODEs is a repository collecting CMS group research work on the application of neural (stochastic/ordinary) differential equations and physically-informed neural networks to model complex multiscale systems.
Exploring the concepts of Physics Informed Neural Networks. Coding a Physics Informed Neural Network to simulate a harmonic oscillator and solve a simple first-order ordinary differential equation.
Add a description, image, and links to the physics-informed-learning topic page so that developers can more easily learn about it.
To associate your repository with the physics-informed-learning topic, visit your repo's landing page and select "manage topics."