Skip to content

spiraldb/vortex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸŒͺ️ Vortex

Build Status Crates.io Documentation PyPI - Python Version

πŸ“š Documentation | πŸ“Š Performance Benchmarks

Overview

Vortex is a next-generation columnar file format and toolkit designed for high-performance data analytics. It provides:

  • ⚑️ Blazing Fast Performance

    • 100-200x faster random access reads than Apache Parquet
    • 2-10x faster scans with similar compression ratios and write throughput
    • Efficient support for wide tables with zero-copy/zero-parse metadata
  • πŸ”§ Extensible Architecture

    • Modeled after Apache DataFusion's extensible approach
    • Pluggable encoding system
    • Zero-copy compatibility with Apache Arrow

🚧 Development Status: This project is under active development. APIs and file formats may change, and some features are still being implemented.

Key Features

Core Capabilities

  • ✨ Logical Types - Clean separation between logical schema and physical layout
  • πŸ”„ Zero-Copy Arrow Integration - Seamless conversion to/from Apache Arrow arrays
  • 🧩 Extensible Encodings - Pluggable physical layouts with built-in optimizations
  • πŸ“¦ Cascading Compression - Support for nested encoding schemes
  • πŸš€ High-Performance Computing - Optimized compute kernels for encoded data
  • πŸ“Š Rich Statistics - Lazy-loaded summary statistics for optimization

Technical Architecture

Logical vs Physical Design

Vortex strictly separates logical and physical concerns:

  • Logical Layer: Defines data types and schema
  • Physical Layer: Handles encoding and storage implementation
  • Built-in Encodings: Compatible with Apache Arrow's memory format
  • Extension Encodings: Optimized compression schemes (RLE, dictionary, etc.)

Quick Start

Installation

Rust Crate

All features are exported through the main vortex crate.

cargo add vortex

Python Package

uv add vortex-array

Command Line UI (vx)

For browsing the structure of Vortex files, you can use the vx command-line tool.

# Install latest release
cargo install vortex-tui --locked

# Or build from source
cargo install --path vortex-tui --locked

# Usage
vx browse <file>

Development Setup

Prerequisites (macOS)

# Optional but recommended dependencies
brew install flatbuffers protobuf  # For .fbs and .proto files
brew install duckdb               # For benchmarks

# Install Rust toolchain
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
# or
brew install rustup

# Initialize submodules
git submodule update --init --recursive

# Setup dependencies with uv
uv sync --all-packages

Performance Optimization

For optimal performance, use MiMalloc:

#[global_allocator]
static GLOBAL_ALLOC: MiMalloc = MiMalloc;

Project Information

License

Licensed under the Apache License, Version 2.0

Governance

Vortex is committed to remaining open-source, following governance models inspired by the Substrait project and Apache Software Foundation.

Contributing

See CONTRIBUTING.md for guidelines.

Acknowledgments πŸ†

This project builds upon groundbreaking work from the academic and open-source communities:

Key Research Papers

Open Source Inspiration


Thanks to all contributors who have shared their knowledge and code with the community! πŸš€