Skip to content

This project is a comprehensive template designed to facilitate the development and fine-tuning of Large Language Models (LLMs)

License

Notifications You must be signed in to change notification settings

sanketrs/ai-llm-project-file-structure-template

Repository files navigation

AI LLM Project

Overview

This project is a comprehensive template designed to facilitate the development and fine-tuning of Large Language Models (LLMs). It provides a modular and organized structure for handling all aspects of an AI/LLM project, from data preprocessing to model evaluation and deployment. Whether you are building a model from scratch or fine-tuning an existing pre-trained LLM, this template will serve as a solid foundation for your work.

Features

  • Modular Structure: Organized directories and files for clean and maintainable code.
  • Data Handling: Modules for loading, preprocessing, and managing datasets.
  • Model Training and Fine-Tuning: Scripts for training and fine-tuning LLMs.
  • Evaluation: Utilities to measure model performance using custom metrics.
  • Scalability: Ready-to-use configuration files for scaling from local development to production.
  • Automation: Scripts for automating repetitive tasks like training and evaluation.

Directory Structure

ai-llm-project/
├── README.md                # Project overview and instructions
├── LICENSE                  # Licensing information
├── .gitignore               # Files and directories to be ignored by Git
├── requirements.txt         # Python dependencies
├── setup.py                 # Packaging and distribution script
├── pyproject.toml           # Project configuration
├── config.yaml              # Default configuration file
├── src/                     # Source code
│   ├── __init__.py          # Initializes the src package
│   ├── data/                # Data handling modules
│   │   ├── __init__.py
│   │   ├── data_loader.py   # Data loading logic
│   │   ├── data_preprocessor.py # Data preprocessing steps
│   ├── models/              # Model modules
│   │   ├── __init__.py
│   │   ├── base_model.py    # Base model architecture
│   │   ├── fine_tune.py     # Fine-tuning logic
│   ├── utils/               # Utility functions
│   │   ├── __init__.py
│   │   ├── file_utils.py    # File operation helpers
│   │   ├── logger.py        # Logging utilities
│   ├── evaluation/          # Evaluation modules
│       ├── __init__.py
│       ├── metrics.py       # Evaluation metrics
│       ├── evaluate.py      # Evaluation scripts
├── tests/                   # Unit tests
│   ├── test_data_loader.py  # Tests for data loading
│   ├── test_fine_tune.py    # Tests for fine-tuning
│   ├── test_metrics.py      # Tests for evaluation metrics
├── notebooks/               # Jupyter notebooks
│   ├── data_exploration.ipynb # Dataset exploration and visualization
│   ├── model_training.ipynb  # Model training workflow
├── data/                    # Dataset storage
│   ├── raw/                 # Raw datasets
│   ├── processed/           # Processed datasets
├── scripts/                 # Standalone scripts
│   ├── train.py             # Script for training models
│   ├── predict.py           # Script for generating predictions
├── docs/                    # Documentation
│   ├── index.md             # Documentation index
│   ├── api_reference.md     # API reference documentation
├── configs/                 # Configuration files
│   ├── default_config.yaml  # Default configuration settings
│   ├── dev_config.yaml      # Development configuration settings
├── logs/                    # Log files
├── checkpoints/             # Saved model checkpoints

Prerequisites

  • Python: Version 3.8 or higher.
  • Libraries: Listed in requirements.txt.
  • Git: Version control system.
  • Jupyter Notebook: For running .ipynb files (optional).

Installation

  1. Clone the repository:
    git clone https://github.com/your-username/ai-llm-project.git
  2. Navigate to the project directory:
    cd ai-llm-project
  3. Create a virtual environment and activate it:
    python -m venv venv
    source venv/bin/activate   # On Windows: venv\Scripts\activate
  4. Install dependencies:
    pip install -r requirements.txt

Usage

  1. Data Preparation: Place raw datasets in the data/raw directory.
  2. Preprocessing: Use src/data/data_preprocessor.py to preprocess the data.
  3. Training: Run scripts/train.py to train or fine-tune the model.
  4. Evaluation: Use scripts/evaluate.py to evaluate model performance.
  5. Predictions: Generate predictions using scripts/predict.py.

Contributing

Contributions are welcome! Please fork the repository and submit a pull request with your changes.

License

This project is licensed under the terms specified in the LICENSE file.

Contact

For questions or feedback, please contact [Your Name] at [your-email@example.com].

About

This project is a comprehensive template designed to facilitate the development and fine-tuning of Large Language Models (LLMs)

Topics

Resources

License

Stars

Watchers

Forks