Skip to content

Add PLAYA-PDF and update release dates #17

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 18 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
fix: use playa main branch with xobject fix
  • Loading branch information
dhdaines committed Feb 20, 2025
commit f624925826dbcdaac22f70a08417a6ef17897db2
14 changes: 7 additions & 7 deletions README.md

Large diffs are not rendered by default.

152 changes: 76 additions & 76 deletions cache.json
Original file line number Diff line number Diff line change
Expand Up @@ -206,46 +206,46 @@
},
"pdfrw": {
"2201.00214": {
"watermark": 0.06678032875061035
"watermark": 0.06585884094238281
},
"GeoTopo-book": {
"watermark": 0.5417091846466064
"watermark": 0.5485935211181641
},
"2201.00151": {
"watermark": 0.05851268768310547
"watermark": 0.05677437782287598
},
"1707.09725": {
"watermark": 0.4045860767364502
"watermark": 0.40639281272888184
},
"2201.00021": {
"watermark": 0.11277961730957031
"watermark": 0.11320853233337402
},
"2201.00037": {
"watermark": 0.0764768123626709
"watermark": 0.07631802558898926
},
"2201.00069": {
"watermark": 0.13684296607971191
"watermark": 0.14584708213806152
},
"2201.00178": {
"watermark": 0.11200451850891113
"watermark": 0.11374044418334961
},
"2201.00201": {
"watermark": 0.07941722869873047
"watermark": 0.08190035820007324
},
"1602.06541": {
"watermark": 0.13727259635925293
"watermark": 0.13877344131469727
},
"2201.00200": {
"watermark": 0.06008315086364746
"watermark": 0.05585813522338867
},
"2201.00022": {
"watermark": 0.15844249725341797
"watermark": 0.15651655197143555
},
"2201.00029": {
"watermark": 0.017334461212158203
"watermark": 0.01755547523498535
},
"1601.03642": {
"watermark": 0.04838132858276367
"watermark": 0.05137896537780762
}
},
"pdftotext": {
Expand Down Expand Up @@ -292,50 +292,6 @@
"read": 0.05305290222167969
}
},
"playa": {
"2201.00214": {
"read": 33.35531687736511
},
"GeoTopo-book": {
"read": 7.86867094039917
},
"2201.00151": {
"read": 8.23330020904541
},
"1707.09725": {
"read": 3.6483688354492188
},
"2201.00021": {
"read": 0.6167638301849365
},
"2201.00037": {
"read": 1.4718003273010254
},
"2201.00069": {
"read": 0.8515617847442627
},
"2201.00178": {
"read": 0.8537464141845703
},
"2201.00201": {
"read": 0.5607175827026367
},
"1602.06541": {
"read": 0.9524991512298584
},
"2201.00200": {
"read": 0.39577698707580566
},
"2201.00022": {
"read": 0.7865602970123291
},
"2201.00029": {
"read": 0.028035879135131836
},
"1601.03642": {
"read": 0.32507753372192383
}
},
"pymupdf": {
"2201.00214": {
"read": 1.2650783061981201,
Expand Down Expand Up @@ -523,6 +479,50 @@
"1601.03642": {
"read": 0.07596778869628906
}
},
"playa": {
"2201.00214": {
"read": 32.66150975227356
},
"GeoTopo-book": {
"read": 8.839988231658936
},
"2201.00151": {
"read": 8.197897672653198
},
"1707.09725": {
"read": 3.6952500343322754
},
"2201.00021": {
"read": 1.0743937492370605
},
"2201.00037": {
"read": 1.8004868030548096
},
"2201.00069": {
"read": 0.8580679893493652
},
"2201.00178": {
"read": 0.8492274284362793
},
"2201.00201": {
"read": 0.5559432506561279
},
"1602.06541": {
"read": 1.0579159259796143
},
"2201.00200": {
"read": 0.8115437030792236
},
"2201.00022": {
"read": 0.769277811050415
},
"2201.00029": {
"read": 0.6836247444152832
},
"1601.03642": {
"read": 0.3228261470794678
}
}
},
"read_quality": {
Expand Down Expand Up @@ -607,22 +607,6 @@
"2201.00029": 0.9649219467401285,
"1601.03642": 0.7867700010287713
},
"playa": {
"2201.00214": 0.9761700404077421,
"GeoTopo-book": 0.927598899820742,
"2201.00151": 0.9222810491856283,
"1707.09725": 0.9757090668337609,
"2201.00021": 0.9719382936299716,
"2201.00037": 0.9513322686391528,
"2201.00069": 0.9697201017811705,
"2201.00178": 0.960335879151019,
"2201.00201": 0.9768103792804297,
"1602.06541": 0.9822372862286228,
"2201.00200": 0.9697131992609057,
"2201.00022": 0.7673033675330817,
"2201.00029": 0.0014646649578908821,
"1601.03642": 0.9891916003293989
},
"pymupdf": {
"2201.00214": 0.9780473882293753,
"GeoTopo-book": 0.957868684569868,
Expand Down Expand Up @@ -670,6 +654,22 @@
"2201.00022": 0.6698799418093457,
"2201.00029": 0.9828859664925239,
"1601.03642": 0.9551993153165015
},
"playa": {
"2201.00214": 0.9761700404077421,
"GeoTopo-book": 0.9276858797705095,
"2201.00151": 0.9222810491856283,
"1707.09725": 0.9757090668337609,
"2201.00021": 0.9719382936299716,
"2201.00037": 0.9425468498406934,
"2201.00069": 0.9697201017811705,
"2201.00178": 0.960335879151019,
"2201.00201": 0.9768103792804297,
"1602.06541": 0.981389499715468,
"2201.00200": 0.9697131992609057,
"2201.00022": 0.7673033675330817,
"2201.00029": 0.9408845676697153,
"1601.03642": 0.9891916003293989
}
},
"watermarking_result_file_size": {
Expand All @@ -694,7 +694,6 @@
"1601.03642": 1026759.0
},
"pdftotext": {},
"playa": {},
"pymupdf": {
"2201.00214": 2716298.0,
"GeoTopo-book": 6857999.0,
Expand Down Expand Up @@ -727,6 +726,7 @@
"2201.00029": 830154.0,
"1601.03642": 1014378.0
},
"tika": {}
"tika": {},
"playa": {}
}
}
9 changes: 8 additions & 1 deletion read/results/playa/1602.06541.txt
Original file line number Diff line number Diff line change
Expand Up @@ -401,7 +401,14 @@ images were labeled by anonymous untrained workers
to which they refer to as knowledge workers (KWs).
One crowd annotation was obtained for each image by
a majority vote on a pixel basis of 10 segmentations
given by 10 different KWs. Figure 2: A typical segmentation pipeline gets raw
given by 10 different KWs. Training
Prediction
Post-
processingWindow-wise
ClassificationWindow
extraction Data
augmentation
Feature extraction Preprocessing Figure 2: A typical segmentation pipeline gets raw
pixel data, applies preprocessing techniques
like scaling and feature extraction like HOG
features. For training, data augmentation
Expand Down
Loading