In modern software development, efficiently combining multiple programming languages can be challenging. This experiment demonstrates how MetaCall enables seamless integration between Go and Python for ML processing, providing significant performance benefits.
graph TD
A[Challenge] --> B[Multiple Language Integration]
A --> C[ML Processing Efficiency]
A --> D[Resource Management]
B --> E[MetaCall Solution]
C --> E
D --> E
E --> F[Go Performance]
E --> G[Python ML Capabilities]
We process 1000 wine reviews using sentiment analysis, comparing three approaches:
- Pure Python (Single-threaded)
- Python with Multiprocessing
- Go + MetaCall Integration
# System Requirements
- Go 1.22 or later
- Python 3.8 or later
- GNU/Linux system (tested on Fedora/Ubuntu)
- Clone and Build MetaCall Core:
# Clone MetaCall repository
git clone https://github.com/metacall/core.git
cd core
# Create build directory
mkdir build && cd build
# Configure with required loaders
cmake \
-DOPTION_BUILD_LOADERS=ON \
-DOPTION_BUILD_LOADERS_PY=ON \
-DOPTION_BUILD_PORTS=ON \
-DOPTION_BUILD_PORTS_GO=ON \
-DNODEJS_CMAKE_DEBUG=ON \
..
# Build and install
sudo HOME="$HOME" cmake --build . --target install
# Update library cache
sudo ldconfig
- Set Environment Variables:
# Add to ~/.bashrc or ~/.zshrc
export LOADER_LIBRARY_PATH="/usr/local/lib"
export LOADER_SCRIPT_PATH="`pwd`"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
- Python Dependencies:
pip install transformers torch pandas tqdm
- Go Dependencies:
go mod init text-classification
go get github.com/metacall/core/source/ports/go_port/source
project/
├── wine-reviews.csv
├── ml_processor.py
├── textClassifier.py
├── multithreadedTextClassifier.py
├── main.go
└── go.mod
Test your setup with:
# Check MetaCall installation
metacall --version
# Verify Python environment
python -c "from transformers import pipeline; print('Transformers OK')"
# Test Go environment
go version
The wine-reviews.csv should contain:
- A 'description' column with wine reviews
- Text data suitable for sentiment analysis
- Create ml_processor.py:
from transformers import pipeline
print("Initializing model...")
classifier = pipeline('text-classification',
model="distilbert-base-uncased-finetuned-sst-2-english",
device="cpu")
print("Model loaded!")
def process_batch(texts: list[str]) -> list[dict]:
try:
results = classifier(texts)
return results
except Exception as e:
print(f"Error processing batch: {str(e)}")
return []
- Verify Environment:
# Run a simple test
export LOADER_SCRIPT_PATH="`pwd`"
metacall ml_processor.py
graph TD
subgraph "Input Processing"
A[Wine Reviews Dataset] --> B[Data Loading]
end
subgraph "Processing Approaches"
subgraph "Pure Python"
F[Single Thread] --> G1[Sequential Batches]
G1 --> G2[Single Model Instance]
G2 --> G3[Sequential Results]
end
subgraph "Python Multiprocessing"
H[8 Processes] --> I1[Parallel Batches]
I1 --> I2[8 Model Instances]
I2 --> I3[Process Pool Results]
end
subgraph "Go + MetaCall"
J[Go Routines] --> K1[Concurrent Batches]
K1 --> K2[Single Shared Model]
K2 --> K3[Channel-based Results]
end
end
subgraph "Resource Impact"
G2 --> R1[Memory: 500MB]
I2 --> R2[Memory: 4GB]
K2 --> R3[Memory: 94MB]
end
B --> F
B --> H
B --> J
# Processing Flow: Sequential
results = classifyTextsBatches(descriptions, batchSize=8)
# Performance: ~38 seconds for 1000 records
# Memory: ~500MB (Python runtime + Model)
Key Points:
-
PyTorch/TensorFlow Internal Optimization
- Already uses multiple cores for computation
- Optimized for tensor operations
- Built-in parallelization
-
Memory Pattern:
graph LR
A[Python Runtime ~50MB] --> B[Model in Memory ~400MB]
B --> C[Data Buffers ~50MB]
graph TD
A[Main Process] --> B[Process 1]
A --> C[Process 2]
A --> D[Process 3]
A --> E[Process 4]
B --> F[Model Copy 1]
C --> G[Model Copy 2]
D --> H[Model Copy 3]
E --> I[Model Copy 4]
Memory Impact:
- Each process: ~500MB
- Total for 8 cores: ~4GB but due to Pythons shared memory optimization could be around 2GB
- Performance degradation due to:
- Resource contention
- Model replication
- IPC overhead
graph TD
A[Go Main Process] --> B[Single Python Runtime]
A --> C[Goroutine 1]
A --> D[Goroutine 2]
A --> E[Goroutine n]
C --> B
D --> B
E --> B
- Batch Processor:
type BatchProcessor struct {
batchSize int // Optimized to 32
numWorkers int // Set to CPU count
inputChan chan []string
resultChan chan []DetailedResult
// ... other fields
}
- Worker Pool:
graph LR
A[Input Channel] --> B[Worker 1]
A --> C[Worker 2]
A --> D[Worker 3]
B --> E[Result Channel]
C --> E
D --> E
- Memory Management:
- Single Python runtime (~500MB)
- Minimal Go overhead (~2KB per goroutine)
- Shared model instance
- Efficient channel communication
Performance Results:
Go + MetaCall:
- Processing Time: ~40s
- Memory Usage: ~94MB
- Worker Count: 8
- Batch Size: 32
graph TB
subgraph "Processing Times"
A[Python Single Thread] --> B[38 seconds]
C[Python Multiprocessing] --> D[220+ seconds]
E[Go + MetaCall] --> F[40 seconds]
end
subgraph "Memory Usage"
G[Python Single] --> H[~500MB]
I[Python Multi] --> J[~4GB]
K[Go + MetaCall] --> L[~94MB]
end
| Implementation | Time (s) | Items/second | Batch Size |
| -------------- | -------- | ------------ | ---------- |
| Python Single | 38 | 26.3 | 8 |
| Python Multi | 220+ | 4.5 | 8 |
| Go + MetaCall | 40 | 25.0 | 32 |
graph LR
A[Memory Usage] --> B[Python Single: 500MB]
A --> C[Python Multi: 4GB]
A --> D[Go + MetaCall: 94MB]
B --> E[Model + Runtime]
C --> F[8x Model + 8x Runtime]
D --> G[Shared Model + Minimal Overhead]
Go + MetaCall Batch Metrics:
{
"batch_metrics": {
"batch_size": 32,
"average_processing_time": "39.84ms",
"memory_per_batch": "~3MB",
"concurrent_batches": 8
}
}
- Python Single-Thread:
- 4-5 cores at 100% (PyTorch optimization)
- Context switching overhead minimal
- Predictable performance
- Python Multiprocessing:
graph TD
A[8 Cores] --> B[100% Usage]
B --> C[Resource Contention]
C --> D[Performance Degradation]
D --> E[Increased Memory Bus Traffic]
- Go + MetaCall:
- Efficient core utilization
- Minimal context switching
- Better resource sharing
- Single model instance benefit
Memory Growth Pattern:
Go + MetaCall:
Initial Memory: ~84MB
Processing Memory: ~94MB
Memory Growth: ~10MB
Python Multi:
Initial Memory: ~500MB
Final Memory: ~4GB
Memory Growth: ~3.5GB
Both implementations showed identical results:
- Total Records: 1000
- Negative Results: 46
- Positive Results: 954
- Python Implementation:
graph TD
A[Bottlenecks] --> B[GIL Limitations]
A --> C[Memory Overhead]
A --> D[Process Creation Cost]
B --> E[Sequential Execution]
C --> F[Model Duplication]
D --> G[IPC Overhead]
- Go + MetaCall Benefits:
graph TD
A[Advantages] --> B[Single Runtime]
A --> C[Efficient Concurrency]
A --> D[Resource Sharing]
B --> E[Memory Efficiency]
C --> F[Better Scaling]
D --> G[Reduced Overhead]
graph TD
A[Real-World Applications] --> B[ML Microservices]
A --> C[Data Processing Pipeline]
A --> D[Edge Computing]
A --> E[Resource-Constrained Systems]
B --> B1[API Services]
C --> C1[ETL Operations]
D --> D1[IoT Devices]
E --> E1[Cloud Cost Optimization]
graph LR
A[API Server] --> B[Python ML Service]
B --> C[New Process per Request]
C --> D[High Memory Usage]
graph LR
A[Go API Server] --> B[Shared ML Runtime]
B --> C[Concurrent Processing]
C --> D[Efficient Resource Use]
Example Benefits:
| Metric | Traditional | MetaCall | Savings |
| --------------- | ----------- | -------- | ------- |
| Memory/Instance | ~500MB | ~100MB | 80% |
| Startup Time | ~2-3s | ~1s | 50% |
| Cost/1000 Reqs | $X | $X/5 | 80% |
graph TD
subgraph "Edge Device Constraints"
A[Limited Memory] --> B[Processing Power]
A --> C[Cost Considerations]
end
subgraph "MetaCall Solution"
D[Efficient Resource Use] --> E[Shared Runtime]
D --> F[Concurrent Processing]
end
Benefits for Edge Deployment:
-
Lower Memory Footprint
- Single model instance
- Efficient concurrent processing
- Minimal overhead
-
Better Resource Utilization
- Shared Python runtime
- Go's efficient scheduling
- Optimized batch processing
graph TD
A[Resource Addition] --> B[Memory Impact]
B --> C[Traditional: Linear Growth]
B --> D[MetaCall: Minimal Growth]
C --> E[+500MB per Process]
D --> F[+2KB per Goroutine]
Cost Implications:
# Traditional Python Scaling
memory_per_instance = 500 * num_processes # MB
# MetaCall Scaling
memory_per_instance = 100 + (0.002 * num_concurrent_requests) # MB
- Resource Configuration:
// Optimal settings based on our experiment
type Config struct {
BatchSize int // 32 for balanced throughput
NumWorkers int // CPU core count
QueueSize int // BatchSize * NumWorkers * 2
MaxConcurrent int // Based on available memory
}
- Monitoring Metrics:
- Processing time per batch
- Memory usage patterns
- Queue depths
- Error rates
- Error Handling:
// Implement robust error handling
func processBatch(batch []string) error {
// Set timeouts
// Handle partial failures
// Implement retries
// Monitor resource usage
}
graph TD
A[Cost Factors] --> B[Memory Usage]
A --> C[Processing Efficiency]
A --> D[Resource Utilization]
B --> E[80% Reduction]
C --> F[Comparable Speed]
D --> G[Better Scaling]
-
Language Flexibility
- Use Go for performance
- Use Python for ML
- Clean separation of concerns
-
Maintenance
- Single model instance
- Simplified deployment
- Easier monitoring
graph TD
A[Experiment Results] --> B[Performance]
A --> C[Memory Usage]
A --> D[Development Experience]
B --> B1[Comparable to Single Thread]
B --> B2[Better Than Multiprocessing]
C --> C1[80% Memory Reduction]
C --> C2[Better Resource Utilization]
D --> D1[Easy Integration]
D --> D2[Best of Both Languages]
| Metric | Python Single | Python Multi | Go + MetaCall |
| ------------------- | ------------- | ------------ | ------------- |
| Processing Time (s) | 38 | 220+ | 40 |
| Memory Usage (MB) | 500 | 4000 | 94 |
| Scalability | Limited | Poor | Excellent |
| Resource Efficiency | Moderate | Poor | Excellent |
graph TB
subgraph "Advantages"
A1[Memory Efficiency]
A2[Better Scaling]
A3[Resource Sharing]
end
subgraph "Trade-offs"
B1[Setup Complexity]
B2[Learning Curve]
B3[Initial Configuration]
end
- Performance Optimizations:
// Potential Enhancements
- Dynamic batch sizing
- Adaptive worker pool
- Memory usage optimization
- Smarter queue management
- Feature Additions:
# Possible Extensions
- GPU support
- Multiple model handling
- Auto-scaling capabilities
- Enhanced monitoring
- Configuration:
graph LR
A[Optimal Settings] --> B[Batch Size: 32]
A --> C[Workers: CPU Count]
A --> D[Queue Size: Dynamic]
- Resource Management:
- Monitor memory usage
- Track batch processing times
- Handle errors gracefully
- Implement proper shutdown
graph TD
A[Migration Steps] --> B[Install MetaCall]
B --> C[Port ML Code]
C --> D[Implement Go Service]
D --> E[Optimize Settings]
F[Considerations] --> G[Team Skills]
F --> H[Infrastructure]
F --> I[Monitoring]
- Use Case Fit:
- Large-scale ML processing
- Resource-constrained environments
- Microservice architectures
- Edge computing applications
- Implementation Strategy:
1. Start with small batches
2. Monitor and adjust
3. Gradually scale up
4. Implement proper error handling
5. Set up comprehensive monitoring
- Development Workflow:
graph LR
A[Development] --> B[Test Small Scale]
B --> C[Monitor Performance]
C --> D[Optimize]
D --> E[Scale Up]
The experiment demonstrates that MetaCall provides:
- Significant memory savings
- Comparable performance
- Better resource utilization
- Scalability advantages
This approach is particularly valuable for:
- Production ML deployments
- Resource-optimized services
- Cost-effective scaling
- Modern microservices