This repo provides the PyTorch implementation of the work. Some code comments still need to be organized
- Ubuntu 16.04/18.04, CUDA 10.1/10.2, python >= 3.6, PyTorch >= 1.6, torchvision
- Install
detectron2
from source sh scripts/install_deps.sh
- Compile the cpp extension for
farthest points sampling (fps)
:sh core/csrc/compile.sh
Download the 6D pose datasets (LM, LM-O, YCB-V) from the
BOP website and
VOC 2012
for background images.
Please also download the image_sets
and test_bboxes
from
here (BaiduNetDisk, OneDrive, password: qjfk).
The structure of datasets
folder should look like below:
# recommend using soft links (ln -sf)
datasets/
├── BOP_DATASETS
├──lm
├──lmo
├──ycbv
├── lm_imgn # the OpenGL rendered images for LM, 1k/obj
├── lm_renders_blender # the Blender rendered images for LM, 10k/obj (pvnet-rendering)
├── VOCdevkit
-
lm_imgn
comes from DeepIM, which can be downloaded here (BaiduNetDisk, OneDrive, password: vr0i). -
lm_renders_blender
comes from pvnet-rendering, note that we do not need the fused data.
./core/gdrn_modeling/train_gdrn.sh <config_path> <gpu_ids> (other args)
Example:
./core/gdrn_modeling/train_gdrn.sh configs/gdrn/lm/a6_cPnP_lm13.py 0 # multiple gpus: 0,1,2,3
# add --resume if you want to resume from an interrupted experiment.
Our trained NMPose models can be found here (BaiduNetDisk,password:flx3).
./core/gdrn_modeling/test_gdrn.sh <config_path> <gpu_ids> <ckpt_path> (other args)
Example:
./core/gdrn_modeling/test_gdrn.sh configs/gdrn/lmo/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_40e.py 0 output/gdrn/lmo/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_40e/gdrn_lmo_real_pbr.pth
This work can not be finished well without the following reference, many thanks for the author's contribution: CDPN, GDR-Net