Skip to content

docs(samples): Added seq2seq sample #1595

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Aug 22, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions samples/model-builder/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,6 +249,19 @@ def mock_run_automl_forecasting_training_job(mock_forecasting_training_job):
yield mock


@pytest.fixture
def mock_get_automl_forecasting_seq2seq_training_job(mock_forecasting_training_job):
with patch.object(aiplatform, "SequenceToSequencePlusForecastingTrainingJob") as mock:
mock.return_value = mock_forecasting_training_job
yield mock


@pytest.fixture
def mock_run_automl_forecasting_seq2seq_training_job(mock_forecasting_training_job):
with patch.object(mock_forecasting_training_job, "run") as mock:
yield mock


@pytest.fixture
def mock_get_automl_image_training_job(mock_image_training_job):
with patch.object(aiplatform, "AutoMLImageTrainingJob") as mock:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def create_training_pipeline_forecasting_sample(
display_name: str,
dataset_id: str,
location: str = "us-central1",
model_display_name: str = None,
model_display_name: str = "my_model",
target_column: str = "target_column",
time_column: str = "date",
time_series_identifier_column: str = "time_series_id",
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional

from google.cloud import aiplatform


# [START aiplatform_sdk_create_training_pipeline_forecasting_seq2seq_sample]
def create_training_pipeline_forecasting_seq2seq_sample(
project: str,
display_name: str,
dataset_id: str,
location: str = "us-central1",
model_display_name: str = "my_model",
target_column: str = "target_column",
time_column: str = "date",
time_series_identifier_column: str = "time_series_id",
unavailable_at_forecast_columns: List[str] = [],
available_at_forecast_columns: List[str] = [],
forecast_horizon: int = 1,
data_granularity_unit: str = "week",
data_granularity_count: int = 1,
training_fraction_split: float = 0.8,
validation_fraction_split: float = 0.1,
test_fraction_split: float = 0.1,
budget_milli_node_hours: int = 8000,
timestamp_split_column_name: str = "timestamp_split",
weight_column: str = "weight",
time_series_attribute_columns: List[str] = [],
context_window: int = 0,
export_evaluated_data_items: bool = False,
export_evaluated_data_items_bigquery_destination_uri: Optional[str] = None,
export_evaluated_data_items_override_destination: bool = False,
quantiles: Optional[List[float]] = None,
validation_options: Optional[str] = None,
predefined_split_column_name: Optional[str] = None,
sync: bool = True,
):
aiplatform.init(project=project, location=location)

# Create training job
forecasting_seq2seq_job = aiplatform.SequenceToSequencePlusForecastingTrainingJob(
display_name=display_name, optimization_objective="minimize-rmse"
)

# Retrieve existing dataset
dataset = aiplatform.TimeSeriesDataset(dataset_id)

# Run training job
model = forecasting_seq2seq_job.run(
dataset=dataset,
target_column=target_column,
time_column=time_column,
time_series_identifier_column=time_series_identifier_column,
unavailable_at_forecast_columns=unavailable_at_forecast_columns,
available_at_forecast_columns=available_at_forecast_columns,
forecast_horizon=forecast_horizon,
data_granularity_unit=data_granularity_unit,
data_granularity_count=data_granularity_count,
training_fraction_split=training_fraction_split,
validation_fraction_split=validation_fraction_split,
test_fraction_split=test_fraction_split,
predefined_split_column_name=predefined_split_column_name,
timestamp_split_column_name=timestamp_split_column_name,
weight_column=weight_column,
time_series_attribute_columns=time_series_attribute_columns,
context_window=context_window,
export_evaluated_data_items=export_evaluated_data_items,
export_evaluated_data_items_bigquery_destination_uri=export_evaluated_data_items_bigquery_destination_uri,
export_evaluated_data_items_override_destination=export_evaluated_data_items_override_destination,
quantiles=quantiles,
validation_options=validation_options,
budget_milli_node_hours=budget_milli_node_hours,
model_display_name=model_display_name,
sync=sync,
)

model.wait()

print(model.display_name)
print(model.resource_name)
print(model.uri)
return model


# [END aiplatform_sdk_create_training_pipeline_forecasting_seq2seq_sample]
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import create_training_pipeline_forecasting_seq2seq_sample
import test_constants as constants


def test_create_training_pipeline_forecasting_seq2seq_sample(
mock_sdk_init,
mock_time_series_dataset,
mock_get_automl_forecasting_seq2seq_training_job,
mock_run_automl_forecasting_seq2seq_training_job,
mock_get_time_series_dataset,
):

create_training_pipeline_forecasting_seq2seq_sample.create_training_pipeline_forecasting_seq2seq_sample(
project=constants.PROJECT,
display_name=constants.DISPLAY_NAME,
dataset_id=constants.RESOURCE_ID,
model_display_name=constants.DISPLAY_NAME_2,
target_column=constants.TABULAR_TARGET_COLUMN,
training_fraction_split=constants.TRAINING_FRACTION_SPLIT,
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT,
test_fraction_split=constants.TEST_FRACTION_SPLIT,
budget_milli_node_hours=constants.BUDGET_MILLI_NODE_HOURS_8000,
timestamp_split_column_name=constants.TIMESTAMP_SPLIT_COLUMN_NAME,
weight_column=constants.WEIGHT_COLUMN,
time_series_attribute_columns=constants.TIME_SERIES_ATTRIBUTE_COLUMNS,
context_window=constants.CONTEXT_WINDOW,
export_evaluated_data_items=constants.EXPORT_EVALUATED_DATA_ITEMS,
export_evaluated_data_items_bigquery_destination_uri=constants.EXPORT_EVALUATED_DATA_ITEMS_BIGQUERY_DESTINATION_URI,
export_evaluated_data_items_override_destination=constants.EXPORT_EVALUATED_DATA_ITEMS_OVERRIDE_DESTINATION,
quantiles=constants.QUANTILES,
validation_options=constants.VALIDATION_OPTIONS,
predefined_split_column_name=constants.PREDEFINED_SPLIT_COLUMN_NAME,
)

mock_get_time_series_dataset.assert_called_once_with(constants.RESOURCE_ID)

mock_sdk_init.assert_called_once_with(
project=constants.PROJECT, location=constants.LOCATION
)
mock_get_automl_forecasting_seq2seq_training_job.assert_called_once_with(
display_name=constants.DISPLAY_NAME,
optimization_objective="minimize-rmse",
)
mock_run_automl_forecasting_seq2seq_training_job.assert_called_once_with(
dataset=mock_time_series_dataset,
target_column=constants.TABULAR_TARGET_COLUMN,
time_column=constants.FORECASTNG_TIME_COLUMN,
time_series_identifier_column=constants.FORECASTNG_TIME_SERIES_IDENTIFIER_COLUMN,
unavailable_at_forecast_columns=constants.FORECASTNG_UNAVAILABLE_AT_FORECAST_COLUMNS,
available_at_forecast_columns=constants.FORECASTNG_AVAILABLE_AT_FORECAST_COLUMNS,
forecast_horizon=constants.FORECASTNG_FORECAST_HORIZON,
data_granularity_unit=constants.DATA_GRANULARITY_UNIT,
data_granularity_count=constants.DATA_GRANULARITY_COUNT,
training_fraction_split=constants.TRAINING_FRACTION_SPLIT,
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT,
test_fraction_split=constants.TEST_FRACTION_SPLIT,
budget_milli_node_hours=constants.BUDGET_MILLI_NODE_HOURS_8000,
model_display_name=constants.DISPLAY_NAME_2,
timestamp_split_column_name=constants.TIMESTAMP_SPLIT_COLUMN_NAME,
weight_column=constants.WEIGHT_COLUMN,
time_series_attribute_columns=constants.TIME_SERIES_ATTRIBUTE_COLUMNS,
context_window=constants.CONTEXT_WINDOW,
export_evaluated_data_items=constants.EXPORT_EVALUATED_DATA_ITEMS,
export_evaluated_data_items_bigquery_destination_uri=constants.EXPORT_EVALUATED_DATA_ITEMS_BIGQUERY_DESTINATION_URI,
export_evaluated_data_items_override_destination=constants.EXPORT_EVALUATED_DATA_ITEMS_OVERRIDE_DESTINATION,
quantiles=constants.QUANTILES,
validation_options=constants.VALIDATION_OPTIONS,
predefined_split_column_name=constants.PREDEFINED_SPLIT_COLUMN_NAME,
sync=True,
)
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def create_training_pipeline_tabular_regression_sample(
display_name: str,
dataset_id: str,
location: str = "us-central1",
model_display_name: str = None,
model_display_name: str = "my_model",
target_column: str = "target_column",
training_fraction_split: float = 0.8,
validation_fraction_split: float = 0.1,
Expand Down