Article in press
Authors:
Title:
Ramsey and Gallai-Ramsey numbers for forests
PDFSource:
Discussiones Mathematicae Graph Theory
Received: 2024-02-06 , Revised: 2024-09-23 , Accepted: 2024-09-30 , Available online: 2024-10-19 , https://doi.org/10.7151/dmgt.2566
Abstract:
Given two non-empty graphs $G,H$ and a positive integer $k$, the Gallai-Ramsey
number ${gr}_k(G:H)$ is defined as the minimum integer $N$ such that for all
$n\geq N$, every $k$-edge-coloring of $K_n$ contains either a rainbow copy of
$G$ or a monochromatic copy of $H$. Given a graph $H$, the $k$-color
Ramsey number $\textrm{R}_{k}(H)$ is the minimum number $n$ such that every
$k$-edge-coloring of $K_{n}$ contains a monochromatic $H$. In this paper, we
determine several exact values and bounds for Gallai-Ramsey numbers
${gr}_k(G:H)$ and Ramsey numbers $\textrm{R}_3(H)$, where $G$ is a special tree
and $H$ is a union of stars.
Keywords:
Ramsey number, Gallai-Ramsey number, edge-coloring
References:
- V. Angeltveit and B.D. McKay, ${R}(5, 5)\le48$, J. Graph Theory 89 (2018) 5–13.
https://doi.org/10.1002/jgt.22235 - R. Bass, C. Magnant, K. Ozeki and B. Pyron, Characterizations of edge-colorings of complete graphs that forbid certain rainbow subgraphs, manuscript.
- S.A. Burr, On the Ramsey numbers ${r}(G,nH)$ and ${r}(nG, nH)$ when $n$ is large, Discrete Math. 65 (1987) 215–229.
https://doi.org/10.1016/0012-365X(87)90053-7 - S.A. Burr, P. Erdős and J.H. Spencer, Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975) 87–99.
https://doi.org/10.1090/S0002-9947-1975-0409255-0 - K. Cameron and J. Edmonds, Lambda composition, J. Graph Theory 26 (1997) 9–16.
https://doi.org/10.1002/(SICI)1097-0118(199709)26:1<9::AID-JGT2>3.0.CO;2-N - M. Chen, Y. Li and C. Pei, Gallai-Ramsey numbers of odd cycles and complete bipartite graphs, Graphs Combin. 34 (2018) 1185–1196.
https://doi.org/10.1007/s00373-018-1931-7 - G. Exoo, A lower bound for ${R}(5,5)$, J. Graph Theory 13 (1989) 97–98.
https://doi.org/10.1002/jgt.3190130113 - J. Fox and B. Sudakov, Ramsey-type problem for an almost monochromatic $K_4$, SIAM J. Discrete Math. 23 (2009) 155–162.
https://doi.org/10.1137/070706628 - S. Fujita, C. Magnant, Y. Mao and K. Ozeki, Rainbow generalizations of Ramsey theory–-a dynamic survey, Theory Appl. Graphs 0(1) (2014) 1.
https://doi.org/10.20429/tag.2014.000101 - S. Fujita and C. Magnant, Extensions of Gallai-Ramsey results, J. Graph Theory 70 (2012) 404–426.
https://doi.org/10.1002/jgt.20622 - S. Fujita and C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247–1254.
https://doi.org/10.1016/j.disc.2009.11.004 - T. Gallai, Transitiv orientierbare Graphen, Acta Math. Hungar. 18 (1967) 25–66.
https://doi.org/10.1007/BF02020961 - R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1–7.
https://doi.org/10.4153/CJM-1955-001-4 - A. Gyárfás, D. Pálvölgyi, B. Patkós and M. Wales, Distribution of colors in Gallai colorings, European J. Combin. 86 (2020) 103087.
https://doi.org/10.1016/j.ejc.2020.103087 - A. Gyárfás and G.N. Sárközy, Star versus two stripes Ramsey numbers and a conjecture of Schelp, Combin. Probab. Comput. 21 (2012) 179–186.
https://doi.org/10.1017/S0963548311000599 - A. Gyárfás, G.N. Sárközy, A. Sebő and S. Selkow, Ramsey-type results for Gallai colorings, J. Graph Theory 64 (2010) 233–243.
https://doi.org/10.1002/jgt.20452 - A. Gyárfás and G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211–216.
https://doi.org/10.1002/jgt.20001 - L. Li, X. Li and Y. Si, Gallai-Ramsey numbers for $3$-uniform rainbow Berge triangles and monochromatic linear paths or cycles, Discrete Appl. Math. 344 (2024) 81–87.
https://doi.org/10.1016/j.dam.2023.11.022 - X. Li and L. Wang, Gallai-Ramsey numbers for a class of graphs with five vertices, Graphs Combin. 36 (2020) 1603–1618.
https://doi.org/10.1007/s00373-020-02194-5 - X. Li, L. Wang and X. Liu, Complete graphs and complete bipartite graphs without rainbow path, Discrete Math. 342 (2019) 2116–2126.
https://doi.org/10.1016/j.disc.2019.04.010 - X. Li, P. Besse, C. Magnant, L. Wang and N. Watts, Gallai-Ramsey numbers for rainbow paths, Graphs Combin. 36 (2020) 1163–1175.
https://doi.org/10.1007/s00373-020-02175-8 - X. Liu, Constrained Ramsey numbers for the loose path, cycle and star, Discrete Math. 347 (2024) 113697.
https://doi.org/10.1016/j.disc.2023.113697 - C. Magnan and P.S. Nowbandegani, Topics in Gallai-Ramsey Theory (Springer Cham, 2020).
https://doi.org/10.1007/978-3-030-48897-0 - Y. Mao, Z. Wang, C. Maganant and I. Schiermeyer, Gallai-Ramsey number for the union of stars, Acta. Math. Sin. (Engl. Ser.) 38 (2022) 1317–1332.
https://doi.org/10.1007/s10114-022-0467-1 - Y. Mao, Z. Wang, C. Magnant and I. Schiermeyer, Ramsey and Gallai-Ramsey number for stars with extra independent edges, Discrete Appl. Math. 285 (2020) 153–172.
https://doi.org/10.1016/j.dam.2020.05.003 - Y. Mao, Z. Wang, C. Magnant and I. Schiermeyer, Ramsey and Gallai-Ramsey number for wheels, Graphs Combin. 38 (2022) 42.
https://doi.org/10.1007/s00373-021-02406-6 - S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2024) #DS1.
https://doi.org/10.37236/21 - F.P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. (3) s2-30 (1930) 264–286.
https://doi.org/10.1112/plms/s2-30.1.264 - F.S. Roberts, Applications of Ramsey theory, Discrete Appl. Math. 9 (1984) 251–261.
https://doi.org/10.1016/0166-218X(84)90025-8 - V. Rosta, Ramsey theory applications, Electron. J. Combin. 11 (2004) #DS13.
https://doi.org/10.37236/34 - A. Thomason and P. Wagner, Complete graphs with no rainbow path, J. Graph Theory 54 (2007) 261–266.
https://doi.org/10.1002/jgt.20207 - Z. Wang, Y. Mao, C. Magnant and J. Zou, Ramsey and Gallai-Ramsey numbers for two classes of unicyclic graphs, Graphs Combin. 37 (2021) 337–354.
https://doi.org/10.1007/s00373-020-02248-8 - Q. Zhang and B. Wei, Gallai-Ramsey numbers for graphs with chromatic number three, Discrete Appl. Math. 304 (2021) 110–118.
https://doi.org/10.1016/j.dam.2021.07.024 - J. Zou, Z. Wang, H.J. Lai and Y. Mao, Gallai-Ramsey numbers involving a rainbow $4$-path, Graphs Combin. 39 (2023) 54.
https://doi.org/10.1007/s00373-023-02648-6 - J. Zhou, Z. Li, Y. Mao and M. Wei, Ramsey and Gallai-Ramsey numbers for the union of paths and stars, Discrete Appl. Math. 325 (2023) 297–308.
https://doi.org/10.1016/j.dam.2022.10.022
Close