DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

Y. Gao

Yujia Gao

Qinghai Normal University

email: gaoyujia@ymail.com

M. Ji

Meng Ji

Tianjin Normal University

email: mji@tjnu.edu.cn

Y. Mao

Yaping Mao

Department of Mathematics, Qinghai Normal University

Center for Mathematics and Interdisciplinary Sciences of Qinghai Province

email: maoyaping@ymail.com

M. Wei

Meiqin Wei

Shanghai Maritime University

email: mqwei@shmtu.edu.cn

Title:

Ramsey and Gallai-Ramsey numbers for forests

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-02-06 , Revised: 2024-09-23 , Accepted: 2024-09-30 , Available online: 2024-10-19 , https://doi.org/10.7151/dmgt.2566

Abstract:

Given two non-empty graphs $G,H$ and a positive integer $k$, the Gallai-Ramsey number ${gr}_k(G:H)$ is defined as the minimum integer $N$ such that for all $n\geq N$, every $k$-edge-coloring of $K_n$ contains either a rainbow copy of $G$ or a monochromatic copy of $H$. Given a graph $H$, the $k$-color Ramsey number $\textrm{R}_{k}(H)$ is the minimum number $n$ such that every $k$-edge-coloring of $K_{n}$ contains a monochromatic $H$. In this paper, we determine several exact values and bounds for Gallai-Ramsey numbers ${gr}_k(G:H)$ and Ramsey numbers $\textrm{R}_3(H)$, where $G$ is a special tree and $H$ is a union of stars.

Keywords:

Ramsey number, Gallai-Ramsey number, edge-coloring

References:

  1. V. Angeltveit and B.D. McKay, ${R}(5, 5)\le48$, J. Graph Theory 89 (2018) 5–13.
    https://doi.org/10.1002/jgt.22235
  2. R. Bass, C. Magnant, K. Ozeki and B. Pyron, Characterizations of edge-colorings of complete graphs that forbid certain rainbow subgraphs, manuscript.
  3. S.A. Burr, On the Ramsey numbers ${r}(G,nH)$ and ${r}(nG, nH)$ when $n$ is large, Discrete Math. 65 (1987) 215–229.
    https://doi.org/10.1016/0012-365X(87)90053-7
  4. S.A. Burr, P. Erdős and J.H. Spencer, Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975) 87–99.
    https://doi.org/10.1090/S0002-9947-1975-0409255-0
  5. K. Cameron and J. Edmonds, Lambda composition, J. Graph Theory 26 (1997) 9–16.
    https://doi.org/10.1002/(SICI)1097-0118(199709)26:1<9::AID-JGT2>3.0.CO;2-N
  6. M. Chen, Y. Li and C. Pei, Gallai-Ramsey numbers of odd cycles and complete bipartite graphs, Graphs Combin. 34 (2018) 1185–1196.
    https://doi.org/10.1007/s00373-018-1931-7
  7. G. Exoo, A lower bound for ${R}(5,5)$, J. Graph Theory 13 (1989) 97–98.
    https://doi.org/10.1002/jgt.3190130113
  8. J. Fox and B. Sudakov, Ramsey-type problem for an almost monochromatic $K_4$, SIAM J. Discrete Math. 23 (2009) 155–162.
    https://doi.org/10.1137/070706628
  9. S. Fujita, C. Magnant, Y. Mao and K. Ozeki, Rainbow generalizations of Ramsey theory–-a dynamic survey, Theory Appl. Graphs 0(1) (2014) 1.
    https://doi.org/10.20429/tag.2014.000101
  10. S. Fujita and C. Magnant, Extensions of Gallai-Ramsey results, J. Graph Theory 70 (2012) 404–426.
    https://doi.org/10.1002/jgt.20622
  11. S. Fujita and C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247–1254.
    https://doi.org/10.1016/j.disc.2009.11.004
  12. T. Gallai, Transitiv orientierbare Graphen, Acta Math. Hungar. 18 (1967) 25–66.
    https://doi.org/10.1007/BF02020961
  13. R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1–7.
    https://doi.org/10.4153/CJM-1955-001-4
  14. A. Gyárfás, D. Pálvölgyi, B. Patkós and M. Wales, Distribution of colors in Gallai colorings, European J. Combin. 86 (2020) 103087.
    https://doi.org/10.1016/j.ejc.2020.103087
  15. A. Gyárfás and G.N. Sárközy, Star versus two stripes Ramsey numbers and a conjecture of Schelp, Combin. Probab. Comput. 21 (2012) 179–186.
    https://doi.org/10.1017/S0963548311000599
  16. A. Gyárfás, G.N. Sárközy, A. Sebő and S. Selkow, Ramsey-type results for Gallai colorings, J. Graph Theory 64 (2010) 233–243.
    https://doi.org/10.1002/jgt.20452
  17. A. Gyárfás and G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211–216.
    https://doi.org/10.1002/jgt.20001
  18. L. Li, X. Li and Y. Si, Gallai-Ramsey numbers for $3$-uniform rainbow Berge triangles and monochromatic linear paths or cycles, Discrete Appl. Math. 344 (2024) 81–87.
    https://doi.org/10.1016/j.dam.2023.11.022
  19. X. Li and L. Wang, Gallai-Ramsey numbers for a class of graphs with five vertices, Graphs Combin. 36 (2020) 1603–1618.
    https://doi.org/10.1007/s00373-020-02194-5
  20. X. Li, L. Wang and X. Liu, Complete graphs and complete bipartite graphs without rainbow path, Discrete Math. 342 (2019) 2116–2126.
    https://doi.org/10.1016/j.disc.2019.04.010
  21. X. Li, P. Besse, C. Magnant, L. Wang and N. Watts, Gallai-Ramsey numbers for rainbow paths, Graphs Combin. 36 (2020) 1163–1175.
    https://doi.org/10.1007/s00373-020-02175-8
  22. X. Liu, Constrained Ramsey numbers for the loose path, cycle and star, Discrete Math. 347 (2024) 113697.
    https://doi.org/10.1016/j.disc.2023.113697
  23. C. Magnan and P.S. Nowbandegani, Topics in Gallai-Ramsey Theory (Springer Cham, 2020).
    https://doi.org/10.1007/978-3-030-48897-0
  24. Y. Mao, Z. Wang, C. Maganant and I. Schiermeyer, Gallai-Ramsey number for the union of stars, Acta. Math. Sin. (Engl. Ser.) 38 (2022) 1317–1332.
    https://doi.org/10.1007/s10114-022-0467-1
  25. Y. Mao, Z. Wang, C. Magnant and I. Schiermeyer, Ramsey and Gallai-Ramsey number for stars with extra independent edges, Discrete Appl. Math. 285 (2020) 153–172.
    https://doi.org/10.1016/j.dam.2020.05.003
  26. Y. Mao, Z. Wang, C. Magnant and I. Schiermeyer, Ramsey and Gallai-Ramsey number for wheels, Graphs Combin. 38 (2022) 42.
    https://doi.org/10.1007/s00373-021-02406-6
  27. S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2024) #DS1.
    https://doi.org/10.37236/21
  28. F.P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. (3) s2-30 (1930) 264–286.
    https://doi.org/10.1112/plms/s2-30.1.264
  29. F.S. Roberts, Applications of Ramsey theory, Discrete Appl. Math. 9 (1984) 251–261.
    https://doi.org/10.1016/0166-218X(84)90025-8
  30. V. Rosta, Ramsey theory applications, Electron. J. Combin. 11 (2004) #DS13.
    https://doi.org/10.37236/34
  31. A. Thomason and P. Wagner, Complete graphs with no rainbow path, J. Graph Theory 54 (2007) 261–266.
    https://doi.org/10.1002/jgt.20207
  32. Z. Wang, Y. Mao, C. Magnant and J. Zou, Ramsey and Gallai-Ramsey numbers for two classes of unicyclic graphs, Graphs Combin. 37 (2021) 337–354.
    https://doi.org/10.1007/s00373-020-02248-8
  33. Q. Zhang and B. Wei, Gallai-Ramsey numbers for graphs with chromatic number three, Discrete Appl. Math. 304 (2021) 110–118.
    https://doi.org/10.1016/j.dam.2021.07.024
  34. J. Zou, Z. Wang, H.J. Lai and Y. Mao, Gallai-Ramsey numbers involving a rainbow $4$-path, Graphs Combin. 39 (2023) 54.
    https://doi.org/10.1007/s00373-023-02648-6
  35. J. Zhou, Z. Li, Y. Mao and M. Wei, Ramsey and Gallai-Ramsey numbers for the union of paths and stars, Discrete Appl. Math. 325 (2023) 297–308.
    https://doi.org/10.1016/j.dam.2022.10.022

Close