Computer Science > Computer Science and Game Theory
[Submitted on 24 Jan 2023]
Title:Learning Effective Strategies for Moving Target Defense with Switching Costs
View PDFAbstract:Moving Target Defense (MTD) has emerged as a key technique in various security applications as it takes away the attacker's ability to perform reconnaissance for exploiting a system's vulnerabilities. However, most of the existing research in the field assumes unrealistic access to information about the attacker's motivations and/or actions when developing MTD strategies. Many of the existing approaches also assume complete knowledge regarding the vulnerabilities of a system and how each of these vulnerabilities can be exploited by an attacker. In this work, we aim to create algorithms that generate effective Moving Target Defense strategies that do not rely on prior knowledge about the attackers. Our work assumes that the only way the defender receives information about its own reward is via interaction with the attacker in a repeated game setting. Depending on the amount of information that can be obtained from the interactions, we devise two different algorithms using multi-armed bandit formulation to identify efficient strategies. We then evaluate our algorithms using data mined from the National Vulnerability Database to showcase that they match the performance of the state-of-the-art techniques, despite using a lot less amount of information.
Submission history
From: Praveen Paruchuri [view email][v1] Tue, 24 Jan 2023 09:57:24 UTC (19,890 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.