Skip to main content
Log in

Multiple-attribute group decision-making method based on intuitionistic multiplicative linguistic information

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper considers a multiple-attribute group decision-making (MAGDM) problem, where the evaluation information and the weight of attribute both take the form of intuitionistic multiplicative linguistic variables (IMLVs). Some new operational laws for IMLVs are introduced, which can guarantee the closeness of operation. Then, several intuitionistic multiplicative linguistic aggregation operators are proposed, and some desirable properties are investigated. Considering the application of intuitionistic multiplicative linguistic preference relation (IMLPR), a new concept of consistent IMLPR is defined. We build a mathematical programming model to obtain the normalized intuitionistic multiplicative linguistic priority weight vector from an IMLPR. An automatic convergent algorithm is designed to repair the unacceptably consistent IMLPR to be of acceptable consistency. Moreover, a model is established to estimate the unknown values of an incomplete IMLPR. Finally, the novel method is applied to some practical problems and the comparison analysis is conducted. The new approach in this paper has two prominent advantages: (i) the constructed consistency-based model can deal with a group decision-making (GDM) problem under the intuitionistic multiplicative linguistic environment; (ii) the proposed aggregation operators can fuse the intuitionistic multiplicative linguistic information and solve the multiple-attribute decision-making (MADM) problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

Code Availability

Not applicable.

References

  • Arora R, Garg H (2019) Group decision-making method based on prioritized linguistic intuitionistic fuzzy aggregation operators and its fundamental properties. Comput Appl Math 38:Article number 36

  • Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Set Syst 20:87–96

    Article  MATH  Google Scholar 

  • Chen ZC, Liu PH, Pei Z (2015) An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int J Comput Int Syst 8(4):747–760

    Article  Google Scholar 

  • Cheng Q, Su B, Tan J (2013) Developing an evaluation index system for lowcarbon tourist attractions in China—a case study examining the Xixi wetland. Tour Manage 36(3):314–320

    Article  Google Scholar 

  • Cho YJ, Wang Y, Hsu LL (2016) Constructing Taiwan’s low-carbon tourism development suitability evaluation indicators. Asia Pac J Tour Res 21(6):658–677

    Article  Google Scholar 

  • Garg H (2019) Generalized intuitionistic fuzzy entropy-based approach for solving multi-attribute decision-making problems with unknown attribute weights. Proc Natl Acad Sci India Sect A Phys Sci 89(1):129–139

    Article  MathSciNet  Google Scholar 

  • Garg H (2020) Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process. Cogn Comput 12:1313–1337

    Article  Google Scholar 

  • Garg H, Kumar K (2019) Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision-making problems. IEEE T Fuzzy Syst 27(12):2302–2311

    Article  Google Scholar 

  • Herrera F, Herrera-Viedma E, Martinez L (2008) A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE T Fuzzy Syst 16(2):354–370

    Article  Google Scholar 

  • Jin FF, Ni ZW, Pei LD, Chen HY, Li YP, Zhu XH, Ni LP (2019) A decision support model for group decision making with intuitionistic fuzzy linguistic preferences relations. Neural Comput Appl 31:1103–1124

    Article  Google Scholar 

  • Liao HC, Xu ZS (2014) Intuitionistic fuzzy hybrid weighted aggregation operators. Int J Intell Syst 29(11):971–993

    Article  Google Scholar 

  • Lin H, Wang ZJ (2017) Linguistic multi-attribute group decision making with risk preferences and its use in low-carbon tourism destination selection. Int J Env Res Pub He 14(9):1078

    Article  Google Scholar 

  • Lin MW, Li XM, Chen LF (2020) Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators. Int J Intell Syst 35(2):217–249

    Article  Google Scholar 

  • Liu PD, Liu JL (2020) A multiple attribute group decision-making method based on the partitioned Bonferroni mean of linguistic intuitionistic fuzzy numbers. Cogn Comput 12:49–70

    Article  Google Scholar 

  • Liu PD, Qin XY (2017) Power average operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision making. J Intell Fuzzy Syst 32(1):1029–1043

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Wei GW, Liu HB, Xu L (2022) Group decision making for internet public opinion emergency based upon linguistic intuitionistic fuzzy information. Int J Mach Learn Cyb 13:579–594

    Article  Google Scholar 

  • Meng FY, Tang J, Hamido F (2019a) Linguistic intuitionistic fuzzy preference relations and their application to multi-criteria decision making. Inform Fus 46:77–90

    Article  Google Scholar 

  • Meng FY, Tang J, Zhang YL (2019b) Programming model-based group decision making with multiplicative linguistic intuitionistic fuzzy preference relations. Comput Ind Eng 136:212–224

    Article  Google Scholar 

  • Nie RX, Wang JQ (2020) Prospect theory-based consistency recovery strategies with multiplicative probabilistic linguistic preference relations in managing group decision making. Arab J Sci Eng 45:2113–2130

    Article  Google Scholar 

  • Pei LD, Jin FF, Ni ZW, Chen HY, Tao ZF (2017) An automatic iterative decision-making method for intuitionistic fuzzy linguistic preference relations. Int J Syst Sci 48(13):2779–2793

    Article  MathSciNet  MATH  Google Scholar 

  • Peng HG, Wang JQ, Cheng PF (2018) A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety. Int J Mach Learn Cyb 9:1053–1068

    Article  Google Scholar 

  • Qian WY, Niu LL (2016) Intuitionistic multiplicative preference relation and its application in group decision making. J Intell Fuzzy Syst 30:2859–2870

    Article  MATH  Google Scholar 

  • Qin YC, Qi QF, Shi PZ, Scott PJ, Jiang XQ (2020) Linguistic interval-valued intuitionistic fuzzy Archimedean prioritised aggregation operators for multi-criteria decision making. J Intell Fuzzy Syst 38:4643–4666

    Article  Google Scholar 

  • Ren PJ, Xu ZS, Liao HC (2016) Intuitionistic multiplicative analytic hierarchy process in group decision making. Comput Ind Eng 101:513–524

    Article  Google Scholar 

  • Rong Y, Liu Y, Pei Z (2020) Novel multiple attribute group decision-making methods based on linguistic intuitionistic fuzzy information. Mathematics 8(3):322

    Article  Google Scholar 

  • Szmidt E, Kacprzyk J (2003) A consensus-reaching process under intuitionistic fuzzy preference relations. Int J Intell Syst 18(7):837–852

    Article  MATH  Google Scholar 

  • Tang F, Liu PD (2019) Multiple-attribute group decision-making method based on the linguistic intuitionistic fuzzy density hybrid weighted averaging operator. Int J Fuzzy Syst 21(1):213–231

    Article  MathSciNet  Google Scholar 

  • Tang J, Meng FY (2019) Decision making with multiplicative hesitant fuzzy linguistic preference relations. Neural Comput Appl 31:2749–2761

    Article  Google Scholar 

  • Tang J, Meng FY, Li CL, Li CH (2018) A consistency-based approach to group decision making with uncertain multiplicative linguistic fuzzy preference relations. J Intell Fuzzy Syst 35:1037–1054

    Article  Google Scholar 

  • Tang J, Chen SM, Meng FY (2019) Group decision making with multiplicative interval linguistic hesitant fuzzy preference relations. Inform Sci 495:215–233

    Article  MATH  Google Scholar 

  • Tang J, Meng FY, Cabrerizo FJ, Herrera-Viedma E (2020) Group decision making with interval-valued intuitionistic multiplicative linguistic preference relations. Group Decis Negot 29:169–206

    Article  MATH  Google Scholar 

  • Wang ZJ (2013) Derivation of intuitionistic fuzzy weights based on intuitionistic fuzzy preference relations. Appl Math Model 37(9):6377–6388

    Article  MathSciNet  MATH  Google Scholar 

  • Wu P, Liu JP, Zhou LG, Chen HY (2020a) Algorithm for improving additive consistency of linguistic preference relations with an integer optimization model. Appl Soft Comput J 86:105955

    Article  Google Scholar 

  • Wu HY, Ren PJ, Xu ZS (2020b) Addressing site selection for earthquake shelters with hesitant multiplicative linguistic preference relation. Inform Sci 516:370–387

    Article  MathSciNet  Google Scholar 

  • Xia MM, Xu ZS, Liao HC (2013) Preference relations based on intuitionistic multiplicative information. IEEE T Fuzzy Syst 21:113–133

    Article  Google Scholar 

  • Xian SD, Jing N, Xue WT, Chai JH (2017) A new intuitionistic fuzzy linguistic hybrid aggregation operator and its application for linguistic group decision making. Int J Intell Syst 32(12):1332–1352

    Article  Google Scholar 

  • Xie WY, Xu ZS, Ren ZL, Herrera-Viedma E (2019) Expanding grey relational analysis with the comparable degree for dual probabilistic multiplicative linguistic term sets and its application on the cloud enterprise. IEEE Access 7:75041–75057

    Article  Google Scholar 

  • Xu ZS (2000) On consistency of the weighted geometric mean complex judgement matrix in AHP. Eur J Oper Res 126:683–687

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS (2004a) A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inform Sci 166:19–30

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS (2004b) EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations. Int J Uncertain Fuzz 12(6):791–810

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS (2005) Extended IOWG operator and its use in group decision making based on multiplicative linguistic preference relations. Am J Appl Sci 2(3):633–643

    Article  Google Scholar 

  • Xu ZS (2006) An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision making with uncertain multiplicative linguistic preference relations. Decis Support Syst 41:488–499

    Article  Google Scholar 

  • Xu ZS (2007a) Intuitionistic fuzzy aggregation operators. IEEE T Fuzzy Syst 15(6):1179–1187

    Article  Google Scholar 

  • Xu ZS (2007b) Multi-person multi-attribute decision making models under intuitionistic fuzzy environment. Fuzzy Optim Decis Ma 6:221–236

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS, Liao HC (2015) A survey of approaches to decision making with intuitionistic fuzzy preference relations. Knowl Based Syst 80:131–142

    Article  Google Scholar 

  • Yuan RP, Tang J, Meng FY (2019) Linguistic intuitionistic fuzzy group decision making based on aggregation operators. Int J Fuzzy Syst 21(2):407–420

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Inform Sciences 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang HM (2014) Linguistic intuitionistic fuzzy sets and application in MAGDM. J Appl Math 2014:432092

    MATH  Google Scholar 

  • Zhang JK (2017) Evaluating regional low-carbon tourism strategies using the fuzzy Delphi-analytic network process approach. J Clean Prod 141:409–419

    Article  Google Scholar 

  • Zhang ZM, Pedrycz W (2018) Intuitionistic multiplicative group analytic hierarchy process and its use in multicriteria group decision-making. IEEE T Cybern 48:1950–1962

    Article  Google Scholar 

  • Zhang Y, Ma HX, Liu BH, Liu J (2012) Group decision making with 2-tuple intuitionistic fuzzy linguistic preference relations. Soft Comput 16:1439–1446

    Article  MATH  Google Scholar 

  • Zhang C, Luo L, Liao HC, Mardani A, Streimikiene D, Al-Barakati A (2020) A priority-based intuitionistic multiplicative UTASTAR method and its application in low-carbon tourism destination selection. Appl Soft Comput J 88:106026

    Article  Google Scholar 

Download references

Funding

This work is funded by the National Social Science Foundation of China (No. 19CGL045).

Author information

Authors and Affiliations

Authors

Contributions

The idea of the whole paper was put forward by LZ, and the first draft of manuscript was written by TL. Both authors performed analysis, numerical computation and approved the final manuscript.

Corresponding author

Correspondence to Liyuan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Graçaliz Pereira Dimuro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Given an IMLPR \(R = (r_{ij})_{n\times n}\) with \(r_{ij} = (s_{\mu _{ij}}, s_{\nu _{ij}})\), if some values of R are unknown, then R is called an incomplete IMLPR. In this Appendix, an approach is provided to estimate the unknown values. From Definition 7 and Theorem 5, we can easily get the following theorem.

Theorem 9

An IMLPR \(R = (r_{ij})_{n\times n}\) with \(r_{ij} = (s_{\mu _{ij}}, s_{\nu _{ij}})\) is called consistent if

$$\begin{aligned}&\log _{q}I(s_{\mu _{ij}})+\log _{q}I(s_{\mu _{jk}})+\log _{q}I(s_{\mu _{ki}})\\&\quad = \log _{q}I(s_{\nu _{ij}})+\log _{q}I(s_{\nu _{jk}})+\log _{q}I(s_{\nu _{ki}}),~~ i,j,k = 1,2,\ldots ,n,~i<j<k. \end{aligned}$$

Assume

$$\begin{aligned} \zeta _{ijk}&= \log _{q}I(s_{\mu _{ij}})+\log _{q}I(s_{\mu _{jk}})+\log _{q}I(s_{\mu _{ki}})\\&\quad -\log _{q}I(s_{\nu _{ij}})-\log _{q}I(s_{\nu _{jk}})-\log _{q}I(s_{\nu _{ki}}),~~ i,j,k = 1,2,\ldots ,n,~i<j<k. \end{aligned}$$

Considering the property of consistency and from Theorem 9, the unknown values should make the absolute deviation \(\vert \zeta _{ijk}\vert \) as small as possible. Let \(U_{ij} = \{(i,j)\mid i<j~\mathrm{and}~s_{\mu _{ij}}~ \mathrm{is} ~\mathrm{unknown}\}\) and \(V_{ij} = \{(i,j)\mid i<j~\mathrm{and}~s_{\nu _{ij}}~ \mathrm{is} ~\mathrm{unknown}\}\), we can build a Model 5 to estimate the missing values.

$$\begin{aligned}&{\textbf {Model}}~ {\textbf {5}} ~~~~~~~ \min ~z = \sum _{i = 1}^{n-2}\sum _{j = i+1}^{n-1}\sum _{k = j+1}^{n}\vert \zeta _{ijk}\vert \\&\begin{aligned}&s.t. {\left\{ \begin{array}{ll} \log _{q}I(s_{\mu _{ij}})+\log _{q}I(s_{\mu _{jk}})+\log _{q}I(s_{\mu _{ki}})-\log _{q}I(s_{\nu _{ij}})\\ -\log _{q}I(s_{\nu _{jk}})-\log _{q}I(s_{\nu _{ki}})-\zeta _{ijk} = 0,~~ 1\le i<j<k\le n,\\ I(s_{\mu _{ij}})\in [1/q,q],~ I(s_{\mu _{ij}})I(s_{\nu _{ij}})\le 1,~~(i,j)\in U_{ij}, ~(i,j)\notin V_{ij}, \\ I(s_{\nu _{ij}})\in [1/q,q],~ I(s_{\mu _{ij}})I(s_{\nu _{ij}})\le 1,~~(i,j)\notin U_{ij}, ~(i,j)\in V_{ij}, \\ I(s_{\mu _{ij}}),I(s_{\nu _{ij}})\in [1/q,q],~ I(s_{\mu _{ij}})I(s_{\nu _{ij}})\le 1,~~(i,j)\in U_{ij}, ~(i,j)\in V_{ij}. \end{array}\right. } \end{aligned} \end{aligned}$$
$$\begin{aligned}&{\textbf {Model}}~ {\textbf {6}} ~~~~~~~ \min ~z = \sum _{i = 1}^{n-2}\sum _{j = i+1}^{n-1}\sum _{k = j+1}^{n}(a_{ijk}^{+}+a_{ijk}^{-})\\&\begin{aligned}&s.t. {\left\{ \begin{array}{ll} \log _{q}I(s_{\mu _{ij}})+\log _{q}I(s_{\mu _{jk}})+\log _{q}I(s_{\mu _{ki}})-\log _{q}I(s_{\nu _{ij}})\\ -\log _{q}I(s_{\nu _{jk}})-\log _{q}I(s_{\nu _{ki}})-a_{ijk}^{+}+a_{ijk}^{-} = 0,~~ 1\le i<j<k\le n,\\ I(s_{\mu _{ij}})\in [1/q,q],~ I(s_{\mu _{ij}})I(s_{\nu _{ij}})\le 1,~~(i,j)\in U_{ij}, ~(i,j)\notin V_{ij}, \\ I(s_{\nu _{ij}})\in [1/q,q],~ I(s_{\mu _{ij}})I(s_{\nu _{ij}})\le 1,~~(i,j)\notin U_{ij}, ~(i,j)\in V_{ij}, \\ I(s_{\mu _{ij}}),I(s_{\nu _{ij}})\in [1/q,q],~ I(s_{\mu _{ij}})I(s_{\nu _{ij}})\le 1,~~(i,j)\in U_{ij}, ~(i,j)\in V_{ij},\\ a_{ijk}^{+}\ge 0,~a_{ijk}^{-}\ge 0,~~ 1\le i<j<k\le n. \end{array}\right. } \end{aligned} \end{aligned}$$

By deleting the absolute value symbols, Model 5 can be rewritten as a Model 6.

After solving Model 6, we can obtain some optimal solutions \(I(s_{\mu _{ij}^{*}})\) (\((i,j)\in U_{ij}\)) and \(I(s_{\nu _{ij}^{*}})\) (\((i,j)\in V_{ij}\)), then from Definition 3, a complete IMLPR \(R = (r_{ij})_{n\times n}\) can be constructed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhang, L. Multiple-attribute group decision-making method based on intuitionistic multiplicative linguistic information. Comp. Appl. Math. 41, 209 (2022). https://doi.org/10.1007/s40314-022-01900-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01900-8

Keywords

Mathematics Subject Classification