Skip to main content
Log in

Bifurcation analysis of an intraguild predator-prey model

  • S.I. : Dynamics, Control and Applications
  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with a predator-prey model and a modified version consisting of a resource-consumer with two consumer species. We analyze the stability of equilibria and for the interior equilibrium, we show that the system undergoes some generic bifurcations such as fold, Hopf and Hopf-zero bifurcations. We characterize these bifurcations by the center manifold theorem and the normal form theory. We further compute the critical normal form coefficients of the reduced system to the center manifold and conclude the non-degeneracy conditions for the computed bifurcations. By using the numerical continuation method, we compute several bifurcation curves emanating from the detected bifurcation points to examine the obtained analytical results as well as to reveal further complex dynamical behaviors of the system which can not be achieved analytically. Especially for both the original and modified models on the Hopf bifurcation curve, we detect some codimension two bifurcations namely Hopf-zero and generalized Hopf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams PA, Fung SR (2010) Prey persistence and abundance in systems with intraguild predation and type-2 functional responses. J Theor Biol 264(3):1033–1042

    Article  MathSciNet  MATH  Google Scholar 

  • Alì G, Bisi M, Spiga G, Torcicollo I (2012) Kinetic approach to sulphite chemical aggression in porous media. Int J Non-Linear Mech 47:769–776

    Article  Google Scholar 

  • Amarasekare P (2007) Spatial dynamics of communities with intraguild predation: the role of dispersal strategies. Am Nat 170:819–831

    Article  Google Scholar 

  • Amarasekare P (2008) Coexistence of intraguild predators and prey in resource-rich environments. Ecology 89:2786–2797

    Article  Google Scholar 

  • Assaneo F, Coutinho RM, Lin Y, Mantilla C, Lutscher F (2013) Dynamics and coexistence in a system with intraguild mutualism. Ecol Complex 14:64–74

    Article  Google Scholar 

  • Capone F, De Luca R (2012) Onset of convection for ternary fluid mixtures saturating horizontal porous layers with large pores. Atti Accad Naz Lincei Sci Fis Mat Nat Rend Lincei Mat Appl 23(4):405–428

    Article  MathSciNet  MATH  Google Scholar 

  • Capone F, De Luca R (2014) Global stability for a binary reaction-diffusion Lotka-Volterra model with ratio-dependent functional response. Acta Appl Math 132(1):151–163

    Article  MathSciNet  MATH  Google Scholar 

  • Capone F, Carfora MF, De Luca R, Torcicollo I (2018) On the dynamics of an intraguild predator-prey model. Math Comput Simul 149:17–31

    Article  MathSciNet  MATH  Google Scholar 

  • Collera JA (2014) Bifurcations in delayed Lotka-Volterra intraguild predation model. J Math Soc Philipp 37:11–22

    Google Scholar 

  • Cupples JB, Crowther MS, Story G, Letnic M (2011) Dietary overlap and prey selectivity among sympatric carnivores: could dingoes suppress foxes through competition for prey. J Mamm 92:590–600

    Article  Google Scholar 

  • de Oliveira TG, Pereira JA (2014) Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J Mamm Evol 21:427–436

    Article  Google Scholar 

  • Dhooge A, Govaerts W, Kuznetsov YA (2003) Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans Math Softw 29:141–164. http://sourceforge.net/projects/matcont

  • Donadio E, Buskirk SW (2006) Diet, morphology, and interspecific killing in carnivora. Am Nat 167:524–536

    Article  Google Scholar 

  • Freeze M, Chang Y, Feng M (2014) Analysis of dynamics in a complex food chain with ratio-dependent functional response. J Appl Anal Comput 4(1):69–87

    MathSciNet  MATH  Google Scholar 

  • Glen AS, Dickman CR, Soulé ME, Mackey BG (2007) Evaluating the role of the dingo as a trophic regulator in Australian ecosystems. Austral Ecol 32:492–501

    Article  Google Scholar 

  • Holt RD, Huxel G (2007) Alternative prey and the dynamics of intraguild predation: theoretical perspectives. Ecology 88:2706–2712

    Article  Google Scholar 

  • Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149(4):745–764

    Article  Google Scholar 

  • Hsu SB, Ruan S, Yang TH (2015) Analysis of three species Lotka-Volterra food webmodels with omnivory. J Math Anal Appl 426:659–687

    Article  MathSciNet  MATH  Google Scholar 

  • Jeschke JM, Kopp MR, Tollrian R (2002) Predator functional responses: discriminating between handling and digesting prey. Ecol Monogr 72(1):95–112

    Article  Google Scholar 

  • Kang Y, Wedekin L (2013) Dynamics of a intraguild predation model with generalist or specialist predator. J Math Biol 67:1227–1259

    Article  MathSciNet  MATH  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Křivan V (1998) Effects of optimal antipredator behavior of prey on predator-prey dynamics: the role of refuges. Theor Popul Biol 53:131–142

    Article  MATH  Google Scholar 

  • Kuijper LDJ, Kooi BW, Zonneveld C, Kooijman SALM (2003) Omnivory and food web dynamics. Ecol Model 163:19–32

    Article  Google Scholar 

  • Kuznetsov YuA (2004) Elements of applied bifurcation theory, 3d, English. Springer, Berlin ((Chinese Edition 2010))

  • Liu Z, Zhang F (2013) Species coexistence of communities with intraguild predation: the role of refuges used by the resource and the intraguild prey. Biosystems 114:25–30

    Article  Google Scholar 

  • Mukherjee S, Zelcer M, Kotler BP (2009) Patch use in time and space for a meso-predator in a risky world. Oecologia 159:661–668

    Article  Google Scholar 

  • Murray J (2001) Mathematical biology: an introduction. Springer, New York

    Google Scholar 

  • Namba T, Tanabe K, Maeda N (2008) Omnivory and stability of food webs. Ecol Complex 5:73–85

    Article  Google Scholar 

  • Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–155

    Article  Google Scholar 

  • Polis GA, McCormick SJ (1987) Intraguild predation and competition among desert scorpions. Ecology 68:332–343

    Article  Google Scholar 

  • Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449

    Article  Google Scholar 

  • Rosenzweig M, MacArthur R (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  • Russell JC, Lecomte V, Dumont Y, Corre ML (2009) Intraguild predation and mesopredator release effect on long-lived prey. Ecol Model 220:1098–1104

    Article  Google Scholar 

  • Ryan D, Cantrell RS (2015) Avoidance behavior in intraguild predation communities: a cross-diffusion model. Discrete Continuous Dynam Syst A 35(4):1641–1663

    Article  MathSciNet  MATH  Google Scholar 

  • Safuan HM, Sidhu HS, Jovanoski Z, Towers IN (2013) Impact of biotic resource enrichment on a predator-prey population. Bull Math Biol 75(10):1798–1812

    Article  MathSciNet  MATH  Google Scholar 

  • Safuan HM, Sidhu HS, Jovanoski Z, Towers IN (2014) A two-species predator-prey model in an environment enriched by a biotic resource. ANZIAM J 54:768–787

    Article  MATH  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  Google Scholar 

  • Schellekens T, Kooten TV (2012) Coexistence of two stage-structured intraguild predators. J Theor Biol 308:36–44

    Article  MathSciNet  MATH  Google Scholar 

  • Shu H, Hu X, Wang L, Watmough J (2015) Delay induced stability switch, multitype bistability and chaos in an intraguild predation model. J Math Biol 71(6–7):1269–1298

    Article  MathSciNet  MATH  Google Scholar 

  • Tanabe K, Namba T (2005) Omnivory creates chaos in simple food webmodels. Ecology 86(12):3411–3414

    Article  Google Scholar 

  • Torcicollo I (2016) On the non-linear stability of a continuous duopoly model with constant conjectural variation. Int J Non-Linear Mech 81:268–273

    Article  Google Scholar 

  • Verdy A, Amarasekare P (2010) Alternative stable states in communities with intraguild predation. J Theor Biol 262:116–128

    Article  MathSciNet  MATH  Google Scholar 

  • Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York

    MATH  Google Scholar 

  • Yamaguchi M, Takeuchi Y, Ma W (2007) Dynamical properties of a stage structured three-species model with intra-guild predation. J Comput Appl Math 201(2):327–338

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Khoshsiar Ghaziani.

Additional information

Communicated by Juan Carlos Cortes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narimani, H., Khoshsiar Ghaziani, R. Bifurcation analysis of an intraguild predator-prey model. Comp. Appl. Math. 41, 184 (2022). https://doi.org/10.1007/s40314-022-01880-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01880-9

Keywords

Mathematics Subject Classification