Skip to main content
Log in

Bifurcation Analysis of a Modified May–Holling–Tanner Predator–Prey Model with Allee Effect

  • Original paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this paper, we investigate the dynamical behavior of a modified May–Holling–Tanner predator–prey model by considering the Allee effect in the prey and alternative food sources for the predator. The model is analyzed theoretically as well as numerically to determine all local codimension one and two bifurcations. Using the local parametrization method and Hopf bifurcation theorem, we analyze the Hopf bifurcation and compute its corresponding normal form coefficient to reveal its criticality. We specially derive normal form of the system near Bogdanov–Takens and generalized Hopf bifurcations, to determine possible bifurcation scenarios near each bifurcation. For Bogdanov–Takens, we further determine a set of parameters for which curves of saddle-node, Hopf and Homoclinic bifurcations can be observed. By numerical continuation technique, we compute several curves of equilibria and bifurcations, and detect different bifurcation points on these curves. For the computed bifurcation points, we numerically compute their corresponding normal form coefficients. We specially compute a family of limit cycles and limit point cycle bifurcation on this family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hsu, S.B.: On global stability of a predator-prey system. Math. Biosci. 1–10, 39 (1978)

    MathSciNet  Google Scholar 

  2. Braza, P.A.: Predator-prey dynamics with square root functional responses. Nonlinear Anal. Real World Appl. 1837–1843, 13 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Yan, D., Cao, H., Xu, X., Wang, X.: Hopf bifurcation for a predator-prey model with age structure. Phys. A 1–15, 526 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Arancibia-Ibarra, C.: The basins of attraction in a modified May–Holling–Tanner predator-prey model with Allee affect. Nonlinear Anal. 15–28, 185 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Arrowsmith, D., Chapman, C.: Dynamical systems: differential equations, maps and chaotic behaviour. Comput. Math. Appl. 1–330, 32 (1996)

    Google Scholar 

  6. Banerjee, M.: Turing and non-Turing patterns in two-dimensional prey-predator models. In: Applications of Chaos and Nonlinear Dynamics in Science and Engineering. Springer, Berlin, Heidelberg, pp. 257–280 (2015)

  7. Kozlova, I., Singh, M., Easton, A., Ridland, P.: Spider mite predator-prey model. Math. Comput. Model. 1287–1298 (2005)

  8. Arancibia-Ibarra, C., GonzAalez-Olivares, E.: The Holling–Tanner model considering an alternative food for predator. In: Proceedings of the 2015 International Conference on Computational and Mathematical Methods in Science and Engineering CMMSE, pp. 130–141 (2015)

  9. Andersson, M., Erlinge, S.: Influence of predation on rodent populations. Oikos 29(3), 591–597 (1977)

    Article  Google Scholar 

  10. Aziz-Alaoui, M., Daher, M.: Boundedness and global stability for a predator-prey model with modified Leslie–Gower and Holling-type II schemes. Appl. Math. Lett. 1069–1075, 16 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Arancibia-Ibarra, C., Flores, J.: Modelling and analysis of a modified May-Holling-Tanner predator-prey model with Allee effect in the prey and an alternative food source for the predator. Math. Biosci. Eng. 17(6), 8052–8073 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arancibia-Ibarra, C., Flores, J., Bode, M., Pettet, G., van Heijster, P.: A modiffed May-Holling-Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete Contin. Dyn. Syst. Ser. B 22(11), 1–20 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Hamzi, B., Kang, W., Barbot, J.P.: Analysis and control of Hopf bifurcations. SIAM J. Control Optim. 42(6), 2200–2220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamzi, B.: Quadratic stabilization of nonlinear control systems with a double- zero bifurcation. In: IFAC Proceedings, pp 161–166 (2001)

  15. Hamzi, B., Lamb, J.S.W., Lewis, D.: A characterization of normal forms for control systems. J. Dyn. Control Syst. 21(2), 273–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fattahpour, H., Zangeneh, H.R.Z., Nagata, W.: Dynamics of rodent population with two predators. Bull. Iran. Math. Soc. 00, 45 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Kramer, A., Berec, L., Drake, J.: Allee effects in ecology and evolution. J. Anim. Ecol. 7–10, 87 (2018)

    Google Scholar 

  18. Verdy, A.: Modulation of predator-prey interactions by the Allee effect. Ecol. Model. 1098–1107, 221 (2010)

    Google Scholar 

  19. Arancibia-Ibarra, D.C., Gonzalez-Olivares, E.: A modified Leslie–Gower predator-prey model with hyperbolic functional response and Allee effect on prey. In: BIOMAT 2010 International Symposium on Mathematical and Computational Biology, pp. 146–162 (2011)

  20. Harley, K., van Heijster, P., Marangell, R., Pettet, G., Wechselberger, M.: Existence of traveling wave solutions for a model of tumor invasion. SIAM J. Appl. Dyn. Syst. 13, 1–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Book  MATH  Google Scholar 

  22. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator and prey system with Michaelis–Menten type predator harvesting. Nonlinear Anal. Real World Appl. 58–82, 33 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Perko, L.: Differential equations and dynamical systems. Springer, NewYork, Berlin, (2001)

  24. Chen, J., Huang, J., Ruan, S., Wang, J.: Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting. SIAM J. Appl. Math. 73, 1876–1905 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, J., Gong, Y., Chen, J.: Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting. Int. J. Bifurc. Chaos 23(10), 1–24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  27. Wittmann, M.J., Stuis, H., Metzler, D.: Genetic Allee effects and their interaction with ecological Allee effects. J. Animal Ecol. 87(1), 11–23 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Khoshsiar Ghaziani.

Additional information

Communicated by Majid Gazor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanghahi, M.J., Ghaziani, R.K. Bifurcation Analysis of a Modified May–Holling–Tanner Predator–Prey Model with Allee Effect. Bull. Iran. Math. Soc. 48, 3405–3437 (2022). https://doi.org/10.1007/s41980-022-00698-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-022-00698-9

Keywords

Mathematics Subject Classification