Skip to main content

The Influence of Population and Memory Sizes on the Evolutionary Algorithm’s Performance for Dynamic Environments

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5484))

Included in the following conference series:

  • 2113 Accesses

Abstract

Usually, evolutionary algorithms keep the size of the population fixed. In the context of dynamic environments, many approaches divide the main population into two, one part that evolves as usual another that plays the role of memory of past good solutions. The size of these two populations is often chosen off-line. Usually memory size is chosen as a small percentage of population size, but this decision can be a strong weakness in algorithms dealing with dynamic environments. In this work we do an experimental study about the importance of this parameter for the algorithm’s performance. Results show that tuning the population and memory sizes is not an easy task and the impact of that choice on the algorithm’s performance is significant. Using an algorithm that dynamically adjusts the population and memory sizes outperforms standard approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gould, J.L., Keeton, W.T.: Biological Science. W. W. Norton & Company (1996)

    Google Scholar 

  2. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  3. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. Technical Report TR AIC-90-001, Naval Research Laboratory (1990)

    Google Scholar 

  4. Yang, S.: Genetic algorithms with elitism-based immigrants for changing optimization problems. In: Giacobini, M., et al. (eds.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 627–636. Springer, Heidelberg (2007)

    Google Scholar 

  5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), pp. 1875–1882. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  6. Simões, A., Costa, E.: Improving memory’s usage in evolutionary algorithms for changing environments. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), pp. 276–283. IEEE Press, Los Alamitos (2007)

    Google Scholar 

  7. Branke, J., Kaußler, T., Schmidt, C.: A multi-population approach to dynamic optimization problems. In: Parmee, I. (ed.) Proceedings of Adaptive Computing in Design and Manufacture (ACDM 2000), pp. 299–308. Springer, Heidelberg (2000)

    Google Scholar 

  8. Schönemann, L.: The impact of population sizes and diversity on the adaptability of evolution strategies in dynamic environments. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 1270–1277. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  9. Simões, A., Costa, E.: Variable-size memory evolutionary algorithm to deal with dynamic environments. In: Giacobini, M., et al. (eds.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 617–626. Springer, Heidelberg (2007)

    Google Scholar 

  10. Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 596–605. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Simões, A., Costa, E.: The influence of population and memory sizes on the evolutionary algorithm’s performance for dynamic environments. Technical Report TR 2008/02, CISUC (2008)

    Google Scholar 

  12. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  13. Uyar, A.S., Harmanci, A.E.: A new population based adaptive dominance change mechanism for diploid genetic algorithms in dynamic environments. Soft Computing 9(11), 803–814 (2005)

    Article  MATH  Google Scholar 

  14. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Computing 9(11), 815–834 (2005)

    Article  MATH  Google Scholar 

  15. Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments. In: Beyer, H.-G. (ed.) Proceedings of the Seventh International Genetic and Evolutionary Computation Conference (GECCO 2005), vol. 2, pp. 1115–1122. ACM Press, New York (2005)

    Google Scholar 

  16. Yang, S.: Associative memory scheme for genetic algorithms in dynamic environments. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–799. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simões, A., Costa, E. (2009). The Influence of Population and Memory Sizes on the Evolutionary Algorithm’s Performance for Dynamic Environments. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01129-0_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01128-3

  • Online ISBN: 978-3-642-01129-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics