Skip to main content

Memory Based on Abstraction for Dynamic Fitness Functions

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4974))

Included in the following conference series:

  • 2078 Accesses

Abstract

This paper proposes a memory scheme based on abstraction for evolutionary algorithms to address dynamic optimization problems. In this memory scheme, the memory does not store good solutions as themselves but as their abstraction, i.e., their approximate location in the search space. When the environment changes, the stored abstraction information is extracted to generate new individuals into the population. Experiments are carried out to validate the abstraction based memory scheme. The results show the efficiency of the abstraction based memory scheme for evolutionary algorithms in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, NY (1996)

    MATH  Google Scholar 

  2. Bendtsen, C.N., Krink, T.: Dynamic memory model for non–stationary optimization. In: Proc. of the 2002 IEEE Congress on Evol. Comput., pp. 145–150 (2002)

    Google Scholar 

  3. Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments, pp. 129–152 (2007)

    Google Scholar 

  4. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proc. of the 1999 Congr. on Evol. Comput., pp. 1875–1882 (1999)

    Google Scholar 

  5. Branke, J., Kauß, T., Schmidt, C., Schmeck, H.: A multi–population approach to dynamic optimization problems. In: Proc. of the 4th Int. Conf. on Adaptive Computing in Design and Manufacturing, pp. 299–308 (2000)

    Google Scholar 

  6. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  7. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments. In: Proc. of the 5th Int. Conf. on Genetic Algorithms, pp. 523–530 (1993)

    Google Scholar 

  8. Fitch, R., Hengst, B., Suc, D., Calbert, G., Scholz, J.: Structural abstraction experiments in reinforcement learning. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 164–175. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey. IEEE Trans. on Evol. Comput. 9, 303–317 (2005)

    Article  Google Scholar 

  10. Lewis, E.H.J., Ritchie, G.: A comparison of dominance mechanisms and simple mutation on non–stationary problems. In: Parallel Problem Solving from Nature V, pp. 139–148 (1998)

    Google Scholar 

  11. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to changing environments by means of the memory based thermodynamical genetic algorithm. In: Proc. of the 7th Int. Conf. on Genetic Algorithms, pp. 299–306 (1997)

    Google Scholar 

  12. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for non–stationary function optimisation. In: Proc. of the 6th Int. Conf. on Genetic Algorithms, pp. 159–166 (1995)

    Google Scholar 

  13. Ramsey, C.L., Greffenstette, J.J.: Case–based initialization of genetic algorithms. In: Proc. of the 5th Int. Conf. on Genetic Algorithms, pp. 84–91 (1993)

    Google Scholar 

  14. Richter, H.: Behavior of evolutionary algorithms in chaotically changing fitness landscapes. In: Parallel Problem Solving from Nature VIII, pp. 111–120 (2004)

    Google Scholar 

  15. Richter, H.: A study of dynamic severity in chaotic fitness landscapes. In: Proc. of the 2005 IEEE Congress on Evolut. Comput., vol. 3, pp. 2824–2831 (2005)

    Google Scholar 

  16. Tinos, R., Yang, S.: A self–organizing random immigrants genetic algorithm for dynamic optimization problems. Genetic Programming and Evolvable Machines 286, 255–286 (2007)

    Article  Google Scholar 

  17. Trojanowski, T., Michalewicz, Z.: Searching for optima in non–stationary environments. In: Proc. of the 1999 Congress on Evol. Comput., pp. 1843–1850 (1999)

    Google Scholar 

  18. Uyar, A.Ş., Harmanci, A.E.: A new population based adaptive dominance change mechanism for diploid genetic algorithms in dynamic environments. Soft Computing 9, 803–815 (2005)

    Article  MATH  Google Scholar 

  19. Yang, S.: Population–based incremental learning with memory scheme for changing environments. In: Proc. of the 2005 Genetic and Evol. Comput. Conference, vol. 1, pp. 711–718 (2005)

    Google Scholar 

  20. Yang, S.: Associative memory scheme for genetic algorithms in dynamic environments. In: Applications of Evolutionary Computing: EvoWorkshops 2006, pp. 788–799 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mario Giacobini Anthony Brabazon Stefano Cagnoni Gianni A. Di Caro Rolf Drechsler Anikó Ekárt Anna Isabel Esparcia-Alcázar Muddassar Farooq Andreas Fink Jon McCormack Michael O’Neill Juan Romero Franz Rothlauf Giovanni Squillero A. Şima Uyar Shengxiang Yang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, H., Yang, S. (2008). Memory Based on Abstraction for Dynamic Fitness Functions. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2008. Lecture Notes in Computer Science, vol 4974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78761-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78761-7_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78760-0

  • Online ISBN: 978-3-540-78761-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics