Abstract
Computer vision systems for automated breast cancer diagnosis using Fine Needle Aspiration Cytology (FNAC) images are under development for a while now. Accurate segmentation of the nuclei in microscopic images is crucial for functioning of these systems, as most quantify and analyze nuclear features for diagnosis. This paper presents a nucleus segmentation system (NSS) involving pre-processing, pre-segmentation and refined segmentation stages. The NSS includes a novel pixel transformation step to create a high contrast grayscale representation of the input color image. The grayscale image gives NSS the capability- to disregard elements that mimic nuclear morphological and luminescence characteristics, and to minimize effects of non-specific staining of cytoplasm by Hematoxylin. Experimental results illustrate generalizability of the NSS to use multiple refined segmentation techniques and particularly achieve accurate nucleus segmentation using active contours without edges(F-score > 0.92). The paper also presents the results of experiments conducted to study the impact of image pre-processing steps on the NSS performance. The pre-processing steps are observed to improve accuracy and consistency across tested refined segmentation techniques.
H. Garud—Special Thanks: Texas Instruments Inc. and Dr. Arindam Ghosh for their continued support.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this paper symbols \(\text {f}\) and \(\mathbf f \) are used to represent single channel and multi-channel images.
References
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Garud, H., Pudipeddi, U.K., Desappan, K., Nagori, S.: A fast color constancy scheme for automobile video cameras. In: 2014 International Conference on Signal Processing and Communications (SPCOM), pp. 1–6, July 2014
Garud, H., Ray, A.K., Manjunatha, M., Chatterjee, J., Mandal, S.: A fast auto white balance scheme for digital pathology. In: 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 153–156, June 2014
Garud, H.T., Sheet, D., Mahadevappa, M., Chatterjee, J., Ray, A.K., Ghosh, A.: Breast fine needle aspiration cytology practices and commonly perceived diagnostic significance of cytological features: a pan-India survey. J. Cytol. 29(3), 183 (2012)
Garud, H., Sheet, D., Ray, A., Mahadevappa, M., Chatterjee, J.: Adaptive weighted-local-difference order statistics filters, US Patent 9,208,545 (2015)
Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)
Grady, L., Schwartz, E.: The graph analysis toolbox: image processing on arbitrary graphs. CAS/CNS Technical Report Series (021) (2010)
Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review- current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2014)
Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)
Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35 (1971)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001
Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A.: Computational intelligence techniques in image segmentation for cytopathology. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. SCI, pp. 169–199. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70778-3_7
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Perry, J.W., Kent, A., Berry, M.M.: Machine literature searching X. Machine language; factors underlying its design and development. Am. Doc. 6(4), 242–254 (1955). doi:10.1002/asi.5090060411
Pietka, D., Dulewicz, A., Jaszczak, P.: Removing artefacts from microscopic images of cytological smears. A shape-based approach. In: Kurzyński, M., Puchała, E., Woźniak, M., żołnierek, A. (eds.) Computer Recognition Systems. Advances in Soft Computing, vol. 30, pp. 661–669. Springer, Heidelberg (2005). doi:10.1007/3-540-32390-2_78
Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001)
Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)
Xing, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016)
Young, I.T.: Shading correction: compensation for illumination and sensor inhomogeneities. In: Current Protocols in Cytometry. John Wiley & Sons, Inc. (2001). ISBN 9780471142959. doi:10.1002/0471142956.cy0211s14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Garud, H. et al. (2017). Methods and System for Segmentation of Isolated Nuclei in Microscopic Breast Fine Needle Aspiration Cytology Images. In: Mukherjee, S., et al. Computer Vision, Graphics, and Image Processing. ICVGIP 2016. Lecture Notes in Computer Science(), vol 10481. Springer, Cham. https://doi.org/10.1007/978-3-319-68124-5_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-68124-5_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68123-8
Online ISBN: 978-3-319-68124-5
eBook Packages: Computer ScienceComputer Science (R0)