Summary
A variety of computational intelligence approaches to nuclei segmentation in the microscope images of fine needle biopsy material is presented in this chapter. The segmentation is one of the most important steps of the automatic medical diagnosis based on the analysis of the microscopic images, and is crucial to making a correct diagnostic decision. Due to complex nature of biological images, standard segmentation methods are not effective enough. In this chapter we present and discuss some modified versions of watershed algorithm, active contours, cellular automata, GrowCut technique, as well as new approaches like fuzzy sets of I and II type, and the sonar-like method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ballard, D.: Generalizing the Hough transform to Detect Arbitrary Shapes. Pattern Recogn 13(2), 111–122 (1981)
Boldrini, J., Costa, M.: An Application of Optimal Control Theory to the Design of Theoretical Schedules of Anticancer Drugs. Int. J. Appl. Math. and Comput. Sci. 9(2), 387–399 (1999)
Carlotto, M.: Histogram analysis using a scale space approach. IEEE Trans. Pattern Analysis and Machine Intelligence 9(1), 121–129 (1987)
Chen, C., Luo, J., Parker, K.: Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans. Image Processing 7(12), 1673–1683 (1998)
Cheng, H.D., Chen, C.H., Chiu, H.H., Xu, H.: Fuzzy homogeneity approach to multilevel thresholding. IEEE Trans. Image Processing 7(7), 1084–1088 (1998)
Duda, R., Hart, P.: Use of the Hough Transformation to Detect Lines and Curves in Picture. Comm. ACM 15, 11–15 (1972)
Dziekan, Ł., Marciniak, A., Obuchowicz, A.: Segmentation of color cytological images usin type II fuzzy sets. In: Korbicz, J., Patan, K., Kowal, M. (eds.) Fault Diagnosis and Fault Tolerant Control, pp. 263–270. Academic Publishing House EXIT, Warszawa (2007)
Fu, K.S., Mui, J.K.: A survey on image segmentation. Pattern Recogn 13, 3–16 (1981)
Hrebień, M., Nieczkowski, T., Korbicz, J., Obuchowicz, A.: The Hough transform and the GrowCut method in segmentation of cytological images. In: Proc. Int. Conf. Signals and Electronic Systems ICSES 2006, Łódź, Poland, vol. 1, pp. 367–370 (2006)
Hrebień, M., Korbicz, J., Obuchowicz, A.: Hough transform (1+1) search strategy and watershed algorithm in segmentation of cytological images. In: Proc. 5th Int. Conf. Comp. Recogn. Systems CORES 2007. Adv. in Soft Computing, vol. 45, pp. 550–557. Springer, Heidelberg (2007)
Hrebień, M., Steć, P.: Fine Needle Biopsy Material Segmentation with Hough Transform and Active Contouring Technique. Journal of Medical Inform. & Techn. 10, 25–34 (2007)
Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2002)
Huang, L.K., Wang, M.J.: Image thresholding by minimizing the measure of fuzziness. Pattern Recogn. 28, 41–51 (1995)
Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)
Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7, 643–658 (1999)
Kass, M., Witkin, A., Terauzopoulos, D.: Snakes: active contour models. In: Proc. 1st Int. Conf. on Computer Vision, pp. 259–263 (1987)
Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets—Fundamental Theoretical Elements. Academic Press, New York (1975)
Kimmel, M., Lachowicz, M., Świerniak, A. (eds.): Cancer Growth and Progression, Mathematical Problems and Computer Simulations. Int. J. of Appl. Math. and Comput. Sci. 13(3) (2003) (special Issue)
Lee, M., Street, W.: Dynamic learning of shapes for automatic object recognition. In: Proc. 17th Workshop Machine Learning of Spatial Knowledge, pp. 44–49 (2000)
Madisetti, V., Williams, D.: The Digital Signal Processing Handbook. CRC Press, Boca Raton (1997)
Marciniak, A., Monczak, R., Kołodziński, M., Prȩtki, O.A.: Test base for the breast cancer diagnosis using FNB method. In: Proc. Nat. Conf. Artificial Intelligence in Biomedical Engineering SIIB 2004, Kraków, Poland, [4] CD-ROM (2004) (in Polish)
Marciniak, A., Obuchowicz, A., Monczak, R., Kołodziński, M.: Cytomorphometry of Fine Needle Biopsy Material from the Breast Cancer. In: Proc. 4th Int. Conf. Comp. Recogn. Systems CORES 2005. Adv. in Soft Computing, pp. 603–609. Springer, Heidelberg (2005)
Mendel, J.M., John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Trans. Fuzzy Systems 10(2), 117–127 (2002)
Mendel, J.M.: An architecture for making judgments using computing with words. Int. J. Appl. Math. Comput. Sci. 12(3), 325–335 (2002)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)
Nevatia, R.: Image Segmentation. In: Young, T.Y., Fu, K.S. (eds.) Handbook of Pattern Recognition and Image Processing. Academic Press, NY (1986)
Nieczkowski, T., Obuchowicz, A.: Application of cellular automaton for enhancing segmentation results of breast cancer fine needle biopsy microscope images. In: Kłopotek, M., Tchórzewski, J. (eds.) Proceedings of Artificial Intelligence Studies, vol. 3, pp. 71–78. University of Podlasie Press, Siedlce (2006)
Nieczkowski, T., Obuchowicz, A.: ‘Sonar’ - Region of Interest Identification and Segmentation Method for Cytological Breast Cancer Images. In: Proc. 5th Int. Conf. Comp. Recogn. Systems CORES 2007. Adv. in Soft Computing, vol. 45, pp. 566–573. Springer, Heidelberg (2007)
Nieczkowski, T., Obuchowicz, A.: Application of decision trees to filtering and segmentation of breast cancer fine needle biopsy microscope images. Biocybernetics and Biomedical Engineering 27(4), 59–70 (2007)
Obuchowicz, A.: Evolutionary Algorithms for Global Optimization and Dynamic System Diagnosis. Lubuskie Scientific Society Press, Zielona Góra (2003)
Obuchowicz, A., Korbicz, J.: Evolutionary methods in designing diagnostic systems. In: Korbicz, J., Kościelny, J.M., Kowalczuk, Z., Cholewa, W. (eds.) Fault Diagnosis: Models, Artificial Intelligence, Applications, pp. 301–331. Springer, Heidelberg (2004)
Olabarriaga, S.D., Smeulders, A.W.M.: Interaction in the segmentation of medical images: A survey. Medical Image Analysis 5, 127–142 (2001)
Otsu, N.: A threshold selection method from grey-level histograms. IEEE Trans. Systems, Man and Cybernetics 9(1), 62–66 (1979)
Pal, N.R., Bezdek, J.C.: Measures of fuzziness: a review and several new classes. In: Yager, R.R., Zadeh, L.A. (eds.) Fuzzy Sets, Neural Networks and Soft Computing, Van Nostrand Reinhold, New York (1994)
Pena-Reyes, C., Sipper, M.: Envolving fuzzy rules for breast cancer diagnosis. In: Proc. Int. Symp. on Nonlinear Theory and Application, vol. 2, pp. 369–372. Polytechniques et Universitaires Romandes Press (1998)
Pratt, W.K.: Digital image processing. Wiley, Chichester (2001)
Russ, J.: The Image Processing Handbook. CRC Press, Boca Raton (1999)
Setiono, R.: Extracting rules from pruned neural networks for breast cancer diagnosis. Artificial Intelligence in Medicine, 37–51 (1996)
Sethian, J.: Fast marching methods. SIAM Review 41(2) (1999)
Steć, P., Domański, M.: Video Frame Segmentation Using Competitive Contours. In: Proc. 13th European Signal Processing Conference, Antalya, Turkey (2005)
Street, W.: Xcyt: A system for remote cytological diagnosis and prognosis of breast cancer. In: Jain, L. (ed.) Soft Computing Techniques in Breast Cancer Prognosis and Diagnosis, pp. 297–322. World Scientific Publishing, Singapore (2000)
Su, M., Chou, C.: A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 674–680 (2001)
Świerniak, A., Ledzewicz, U., Schättler, H.: Optimal Control for a Class of Compartmental Models in Cancer Chemotherapy. Int. J. of Appl. Math. and Comput. Sci. 13(3), 357–368 (2003)
Tadeusiewicz, R.: Vision Systems of Industrial Robots. WNT, Warszawa (in Polish) (1992)
Tizhoosh, H.R.: Image thresholding using type II fuzzy sets. Pattern Recognition 38, 2363–2372 (2005)
Vezhnevets, V., Konouchine, V.: “GrowCut” – Interactive Multi-Label N-D Image Segmentation by Cellular Automata. In: Proc. 15th Int. Conf. on Comp. Graphics and Appl. GraphiCon 2005, Novosibirsk, Russia, pp. 150–156 (2005)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)
Wolberg, W., Street, W., Mangasarian, O.: Breast cytology diagnosis via digital image analysis. Analytical and Quantitative Cytology and Histology 15(6), 396–404 (1993)
Zhou, P., Pycock, D.: Robust statistical models for cell image interpretation. Image and Vision Computing 15(4), 307–316 (1997)
Zouagui, T., Benoit-Cattin, H., Odet, C.: Image segmentation functional model. Pattern Recognition 37(9), 1785–1795 (2002)
Żorski, W.: Image Segmentation Methods Based on the Hough Transform. Studio GiZ, Warszawa (in Polish) (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A. (2008). Computational Intelligence Techniques in Image Segmentation for Cytopathology. In: Smolinski, T.G., Milanova, M.G., Hassanien, AE. (eds) Computational Intelligence in Biomedicine and Bioinformatics. Studies in Computational Intelligence, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70778-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-70778-3_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70776-9
Online ISBN: 978-3-540-70778-3
eBook Packages: EngineeringEngineering (R0)