Skip to main content

Exploring the Individual Differences in Multidimensional Evolution of Knowledge States of Learners

  • Conference paper
  • First Online:
Adaptive Instructional Systems (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14044))

Included in the following conference series:

  • 581 Accesses

Abstract

The key to the effectiveness of Intelligent Tutoring Systems (ITSs) is to fit the uncertainty of each learner’s performance in performing different learning tasks. Throughout the tutoring and learning process, the uncertainty of learners’ performance can reflect their varying knowledge states, which can arise from individual differences in learning characteristics and capacities. In this investigation, we proposed a multidimensional representation of the evolution of knowledge states of learners to better understand individual differences among them. This assumption about this representation is verified using the Tensor Factorization (TF) based method, a modern state-of-the-art model for knowledge tracing. The accuracy of the Tensor-based method is evaluated by comparing it to other knowledge-tracing methods, to gain a deeper insight into individual differences among learners and their learning of diverse contents. The experimental data under focus in our investigation is derived from the AutoTutor lessons that were developed for the Center for the Study of Adult Literacy (CSAL), which employs a trialogue design comprising of a virtual tutor, a virtual companion and a human learner. A broader merit of our proposed approach lies in its capability to capture individual differences more accurately, without requiring any changes in the real-world implementation of ITSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granić, A., Adams, R.: User sensitive research in e-learning: exploring the role of individual user characteristics. Univ. Access Inf. Soc. 10(3), 307–318 (2011)

    Article  Google Scholar 

  2. O’Shea, T., et al.: Tools for creating intelligent computer tutors. In: Proceedings of the International NATO Symposium on Artificial and Human Intelligence, pp. 181–199 (1984)

    Google Scholar 

  3. Graesser, A.C., et al.: Assessment with computer agents that engage in conversational dialogues and trialogues with learners. Comput. Hum. Behav. 76, 607–616 (2017)

    Article  Google Scholar 

  4. Mousavinasab, E., et al.: Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods. Interact. Learn. Environ. 29(1), 142–163 (2021)

    Article  Google Scholar 

  5. Woolf, B.P.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing e-Learning. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  6. Egan, D.E.: Individual differences in human-computer interaction. In: Handbook of Human-Computer Interaction, pp. 543–568. Elsevier (1988)

    Google Scholar 

  7. Kuurstra, J.: Individual differences in human-computer interaction: a review of empirical studies (2015)

    Google Scholar 

  8. Landriscina, F.: Simulation and Learning. Springer, Heidelberg (2013)

    Book  Google Scholar 

  9. MacLellan, C.J.: Computational models of human learning: applications for tutor development, behavior prediction, and theory testing. Ph.D. thesis. Carnegie Mellon University (2017)

    Google Scholar 

  10. Illeris, K: A comprehensive understanding of human learning. In: Contemporary Theories of Learning, pp. 1–14. Routledge (2018)

    Google Scholar 

  11. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-adapted Interact. 4(4), 253–278 (1994)

    Article  Google Scholar 

  12. Block, J.H., Burns, R.B.: Mastery learning. Review Res. Educ. 4, 3–49 (1976)

    Google Scholar 

  13. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_24

    Chapter  Google Scholar 

  14. Trifa, A., Hedhili, A., Chaari, W.L.: Knowledge tracing with an intelligent agent, in an e-learning platform. Educ. Inf. Technol. 24(1), 711–741 (2019)

    Article  Google Scholar 

  15. Pavlik, P.I., Eglington, L.G., Harrell-Williams, L.M.: Logistic knowledge tracing: a constrained framework for learner modeling. IEEE Trans. Learn. Technol. 14(5), 624–639 (2021)

    Article  Google Scholar 

  16. Essa, A.: A possible future for next generation adaptive learning systems. Smart Learn. Environ. 3(1), 1–24 (2016)

    Article  Google Scholar 

  17. Brusilovsky, P.: Adaptive hypermedia for education and training. Adapt. Technol. Training Educ. 46, 46–68 (2012)

    Article  Google Scholar 

  18. Corbett, A.T., Anderson, J.R.: Student modeling and mastery learning in a computer-based programming tutor. In: Frasson, C., Gauthier, G., McCalla, G.I. (eds.) ITS 1992. LNCS, vol. 608, pp. 413–420. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55606-0_49

    Chapter  Google Scholar 

  19. Abdelrahman, G., Wang, Q., Nunes, B.P.: Knowledge tracing: a survey. ACM Comput. Surv. 55, 1–37 (2022)

    Article  Google Scholar 

  20. Embretson, S.E., Reise, S.P.: Item Response Theory. Psychology Press (2013)

    Google Scholar 

  21. Barnes, T.: The Q-matrix method: mining student response data for knowledge. In: American Association for Artificial Intelligence 2005 Educational Data Mining Workshop, Pittsburgh, PA, USA, pp. 1–8. AAAI Press (2005)

    Google Scholar 

  22. Cen, H., Koedinger, K., Junker, B.: Comparing two IRT models for conjunctive skills. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 796–798. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_111

    Chapter  Google Scholar 

  23. Pavlik, P.I., Jr., Cen, H., Koedinger, K.R.: Performance factors analysis–a new alternative to knowledge tracing. Online Submission (2009)

    Google Scholar 

  24. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_18

    Chapter  Google Scholar 

  25. Käser, T., et al.: Dynamic Bayesian networks for student modeling. IEEE Trans. Learn. Technol. 10(4), 450–462 (2017)

    Article  Google Scholar 

  26. Lan, A.S., et al.: Sparse factor analysis for learning and content analytics. arXiv preprint arXiv:1303.5685 (2013)

  27. Sahebi, S., Lin, Y.-R., Brusilovsky, P.: Tensor factorization for student modeling and performance prediction in unstructured domain. In: International Educational Data Mining Society (2016)

    Google Scholar 

  28. Sahebi, S., Huang, Y., Brusilovsky, P.: Parameterized exercises in Java programming: using knowledge structure for performance prediction. In: The Second Workshop on AI-Supported Education for Computer Science (AIEDCS), University of Pittsburgh, pp. 61–70 (2014)

    Google Scholar 

  29. Doan, T.-N., Sahebi, S.: Rank-based tensor factorization for student performance prediction. In: 12th International Conference on Educational Data Mining (EDM) (2019)

    Google Scholar 

  30. Karatzoglou, A., et al.: Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 79–86 (2010)

    Google Scholar 

  31. Graesser, A.C., et al.: Reading comprehension lessons in AutoTutor for the Center for the Study of Adult Literacy. In: Adaptive Educational Technologies for Literacy Instruction, pp. 288–293. Routledge (2016)

    Google Scholar 

  32. Graesser, A.C., Li, H., Forsyth, C.: Learning by communicating in natural language with conversational agents. Curr. Dir. Psychol. Sci. 23(5), 374–380 (2014)

    Article  Google Scholar 

  33. Fang, Y., Lippert, A., Cai, Z., Hu, X., Graesser, A.C.: A conversation-based intelligent tutoring system benefits adult readers with low literacy skills. In: Sottilare, R.A., Schwarz, J. (eds.) HCII 2019. LNCS, vol. 11597, pp. 604–614. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22341-0_47

    Chapter  Google Scholar 

  34. Graesser, A.C., et al.: Coh-Metrix measures text characteristics at multiple levels of language and discourse. Elementary Sch. J. 115(2), 210–229 (2014)

    Article  Google Scholar 

  35. McNamara, D.S., et al.: Automated Evaluation of Text and Discourse with Coh-Metrix. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  36. Newell, A., Simon, H.A., et al.: Human Problem Solving, vol. 104. 9. Prentice-Hall, Englewood Cliffs (1972)

    Google Scholar 

  37. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis–a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006). https://doi.org/10.1007/11774303_17

    Chapter  Google Scholar 

  38. Koedinger, K.R., Corbett, A.T., Perfetti, C.: The knowledge-learning-instruction framework: bridging the science-practice chasm to enhance robust student learning. Cogn. Sci. 36(5), 757–798 (2012)

    Article  Google Scholar 

  39. Aleven, V., Koedinger, K.R.: Knowledge component (KC) approaches to learner modeling. Des. Recommendations Intell. Tutoring Syst. 1, 165–182 (2013)

    Google Scholar 

  40. Yudelson, M., Pavlik, P.I., Koedinger, K.R.: User modeling–a notoriously black art. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 317–328. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_27

    Chapter  Google Scholar 

  41. Chi, M., et al.: Instructional factors analysis: a cognitive model for multiple instructional interventions. In: EDM 2011, pp. 61–70 (2011)

    Google Scholar 

  42. Eglington, L.G., Pavlik, P.I., Jr.: How to optimize student learning using student models that adapt rapidly to individual differences. Int. J. Artif. Intell. Educ. 1–22 (2022)

    Google Scholar 

  43. Baker, R.S.J., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_44

    Chapter  Google Scholar 

  44. Baker, R.S.J., Corbett, A.T., Aleven, V.: Improving contextual models of guessing and slipping with a truncated training set (2008)

    Google Scholar 

  45. van De Sande, B.: Properties of the Bayesian knowledge tracing model. J. Educ. Data Min. 5(2), 1–10 (2013)

    Google Scholar 

  46. Wang, D., et al.: Traditional knowledge tracing models for clustered students (2021)

    Google Scholar 

  47. Lan, A.S., Studer, C., Baraniuk, R.G.: Quantized matrix completion for personalized learning. arXiv preprint arXiv:1412.5968 (2014)

  48. Lan, A.S., Studer, C., Baraniuk, R.G.: Matrix recovery from quantized and corrupted measurements. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4973–4977. IEEE (2014)

    Google Scholar 

  49. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shi, G., Pavlik, P., Jr., Graesser, A.: Using an additive factor model and performance factor analysis to assess learning gains in a tutoring system to help adults with reading difficulties. In: Grantee Submission (2017)

    Google Scholar 

  52. Shi, G., et al.: Diagnostic assessment of adults’ reading deficiencies in an intelligent tutoring system. In: ITS Workshops, pp. 105–112 (2018)

    Google Scholar 

  53. Shi, G., et al.: Exploring an intelligent tutoring system as a conversation-based assessment tool for reading comprehension. Behaviormetrika 45(2), 615–633 (2018). https://doi.org/10.1007/s41237-018-0065-9

    Article  Google Scholar 

  54. Wickelgren, W.A.: Human learning and memory. Ann. Rev. Psychol. 32(1), 21–52 (1981)

    Article  Google Scholar 

  55. Newell, A., Rosenbloom, P.S.: Mechanisms of skill acquisition and the law of practice. Technical report. Carnegie-Mellon University, Pittsburgh, PA, Department of Computer Science (1980)

    Google Scholar 

  56. DeKeyser, R.: Skill acquisition theory. In: Theories in Second Language Acquisition, pp. 83–104. Routledge (2020)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation Learner Data Institute (NSF #1934745).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Pavlik, P.I., Hu, X., Cockroft, J.L., Wang, L., Shi, G. (2023). Exploring the Individual Differences in Multidimensional Evolution of Knowledge States of Learners. In: Sottilare, R.A., Schwarz, J. (eds) Adaptive Instructional Systems. HCII 2023. Lecture Notes in Computer Science, vol 14044. Springer, Cham. https://doi.org/10.1007/978-3-031-34735-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34735-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34734-4

  • Online ISBN: 978-3-031-34735-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics