Summary
We propose a new scheme for enlarging generalized learning vector quantization with weighting factors for the several input dimensions which are adapted according to the specific task. This leads to a more powerful classifier with little extra cost as well as the possibility of automatically pruning irrelevant input dimensions. The method is tested on real world satellite image data and compared to several well known algorithms which determine the intrinsic data dimension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. F. Augusteijn, K. A. Shaw, and R. J. Watson. A study of neural network input data for ground cover identification in satellite images. In S. Gielen and B. Kappen, editors, Proc. ICANN’93, Int. Conf. on Artificial Neural Networks, pages 1010–1013, London, UK, 1993. Springer.
H.-U. Bauer and T. Villmann. Growing a Hypercubical Output Space in a Self-Organizing Feature Map. IEEE Transactions on Neural Networks, 8(2):218–226, 1997.
T. Bojer, B. Hammer, D. Schunk, and K. Tluk von Toschanowitz. Relevance determination in learning vector quantization. To appear at ESANN’01.
C.L. Blake and C. J. Merz, UCI Repository of machine learning databases, Irvine, CA: University of California, Department of Information and Computer Science.
J. Campbell. Introduction to Remote Sensing. The Guilford Press, U.S.A., 1996.
B. Fritzke. Growing grid: a self-organizing network with constant neighborhood range and adaftation strength. Neural Processing Letters, 2(5):9–13, 1995.
I. Gath and A. Geva. Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11: 773–791, 1989.
R Grassberger and I. Procaccia. Maesuring the strangeness of strange attractors. Physica, 9D: 189–208, 1983.
D. Gustafson and W. Kessel. Fuzzy clustering with a fuzzy covariance matrix. In Proceedings of IEEE CDC’79, pages 761–766, 1979.
A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7): 1483–1492, 1997.
S. Kaski. Dimensionality reduction by random mapping: fast similarity computation for clustering. In Proceedings of IJCNN’92, pages 413–418, 1998.
T. Kohonen. Learning vector quantization. In M. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 537–540. MIT Press, 1995.
T. Kohonen. Self-Organizing Maps. Springer, 1997.
T. Martinetz and K. Schulten. Topology representing networks. Neural Networks, 7(3): 507–522, 1993.
U. Matecki. Automatische Merkmalsauswahl für Neuronale Netze mit Anwendung in der pixelbezogenen Klassifikation von Bildern. Shaker, 1999.
E. Merenyi. The challenges in spectral image analysis: An introduction and review of ANN approaches. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’99), pages 93–98, Brussels, Belgium, 1999. D facto publications.
A. Meyering and H. Ritter. Learning 3D-shape-perception with local linear maps. In Proceedings of IJCNN’92, pages 432–436, 1992.
E. Oja. Principal component analysis. In M. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 753–756. MIT Press, 1995.
H. Ritter. Self-organizing maps in non-euclidean spaces. In E. Oja and S. Kaski, editors, Kohonen Maps, pages 97–108. Springer, 1999.
A. S. Sato and K. Yamada. Generalized learning vector quantization. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems, volume 7, pages 423–429. MIT Press, 1995.
P. Somervuo and T. Kohonen. Self-organizing maps and learning vector quantization for feature sequences. Neural Processing Letters, 10(2): 151–159, 1999.
M.-K. Tsay, K.-H. Shyu, and P.-C. Chang. Feature transformation with generalized learning vector quantization for hand-written Chinese character recognition. IE1CE Transactions on Information and Systems, E82-D(3): 687–692, 1999.
T. Villmann and E. Merenyi. Extensions and modifications of the Kohonen-SOM and applications in remote sensing image analysis. In U. Seiffert and L.C. Jain (eds.): Self-Organizing Maps. Recent Advances and Applications, pages 121–145. Springer, 2001
T. Villmann. Benefits and limits of the self-organizing map and its variants in the area of satellite remote sensoring processing. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’99), pages 111–116, Brussels, Belgium, 1999. D facto publications.
T. Villmann, R. Der, M. Herrmann, and T. Martinetz. Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks, 8(2): 256–266, 1997.
W. Wienholt. Entwurf Neuronaler Netze. Verlag Harri Deutsch, Frankfurt/M., Germany, 1996.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag London Limited
About this paper
Cite this paper
Hammer, B., Villmann, T. (2001). Estimating Relevant Input Dimensions for Self-organizing Algorithms. In: Advances in Self-Organising Maps. Springer, London. https://doi.org/10.1007/978-1-4471-0715-6_25
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0715-6_25
Publisher Name: Springer, London
Print ISBN: 978-1-85233-511-3
Online ISBN: 978-1-4471-0715-6
eBook Packages: Springer Book Archive