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Summary. We propose a new scheme for enlarging generalized learning vector quantization 
with weighting factors for the several input dimensions which are adapted according to the 
specific task. This leads to a more powerful classifier with little extra cost as well as the 
possibility of automatically pruning irrelevant input dimensions. The method is tested on real 
world satellite image data and compared to several well known algorithms which determine 
the intrinsic data dimension. 

1 Introduction 

Self-organizing methods such as the self-organizing map (SOM) or vector quanti
zation (VQ) as introduced by Kohonen provide a successful and intuitive method 
of processing data for easy access [12]. Assumed data are labeled, an automatic 
clustering can be learned via attaching maps to the SOM or enlarging VQ with a 
supervised component to so-called learning vector quantization (LVQ) [13,17]. Var
ious modifications ofLVQ exist which ensure faster convergence, a better adaptation 
of the receptive fields to optimum Bayesian decision, or an adaptation for complex 
data structures, to name just a few [13,20,21]. Concerning SOM, one major problem 
consists in finding an appropriate topology of the initial lattice of codebooks such 
that the prior topology of the neural architecture mirrors the intrinsic topology of 
the data. Hence various approaches exist in order to measure the degree of topology 
preservation, to adapt the topology to the data, to define the lattice a posteriori, or 
to evolve structures which are appropriate for real world data [2,6,14,19,25]. In all 
tasks the intrinsic dimensionality of the data plays a crucial role since it determines 
large parts of the optimum neural network, i.e., the lattice for SOM. Moreover, su
perfluous data dimensions slow down the training for LVQ as well. They may even 
cause a decrease in accuracy since they add possibly noisy or misleading terms to 
the Euclidian metric where LVQ is based on. Hence a data dimension as small as 
possible is desirable for the above mentioned methods in general, for the sake of 
efficiency, accuracy, and simplicity of neural network processing. We will consider 
possibilities of pruning irrelevant data dimensions and computing the intrinsic data 
dimension in this paper. Approaches like [11] clearly indicate that often a consider
able reduction of the data dimension is possible without loss of information. 

We will focus on LVQ since it combines the elegancy of simple and intuitive 
updates in unsupervised algorithms with the accuracy of supervised methods. The 
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main idea of our approach is to introduce weighting factors to the data dimensions 
which are adapted automatically such that the classification error becomes minimal. 
Small factors indicate that the respective data dimension is irrelevant. This idea can 
be applied to any generalized LVQ (GLVQ) scheme as introduced in [20] such that 
a robust and efficient method results which can push the classification borders near 
to the optimum Bayesian decision. This method, generalized relevance LVQ (GR
LVQ), generalizes relevance LVQ (RLVQ) [3] which is based on simple Hebbian 
learning and leads to worse and instable results in case of noisy real life data. How
ever, like RLVQ, GRLVQ has the advantage of an intuitive update rule and allows 
efficient input pruning compared to other approaches which adapt the metric to the 
data involving additional transformations as proposed in [7,9,22] or depend on less 
intuitive differentiable approximations of the original dynamics [15]. We will apply 
GRLVQ to classify a real life satellite image with approx. 3 mio. data points. Apart 
from the above mentioned methods, dimensionality reduction is possible via stan
dard methods like principal component analysis or independent component analy
sis [10,18]. Furthermore, a growing SaM (GSOM) automatically adapts the lattice 
of neurons to the data and hence gives hints about the intrinsic dimensionality as 
well. We compare our GRLVQ experiments to the results provided by GSOM and 
a Grassberger-Procaccia analysis respectively, and obtain comparable results con
cerning the intrinsic dimensionality of our data. 

2 The GRLVQ Algorithm 

Assume a finite training set X = {(xi, yi) C IRn x {I, ... ,C} Ii = 1, ... ,m} of 
training data is given and the clustering of the data into C classes is to be learned. 
We denote the components of a vector x E IRn by (Xl, ... ,xn ) in the following. 
GLVQ chooses a fixed number of vectors in IRn for each class, so called codebooks. 
Denote the set of codebooks by {w l , ... , wK } and assign the label ci = c to wi 
iff wi belongs to the c th class, c E {I, ... , C}. The receptive field of wi is defined 
by Ri = {x E X I Vwi (j :f. i -+ Ix - wil < Ix - wil)}. The training algorithm 
adapts the codebooks wi such that for each class c E {l, ... ,C}, the corresponding 
codebooks represent the class as accurately as possible. That means, the difference 
of the points belonging to the c th class, {xi E X I yi = c}, and the receptive fields 
of the corresponding codebooks, Uci=c Ri, should be as small as possible for each 
class. For a given data point (x, y) E X denote by J..L(x) some function which is 
negative if x is classified correct, i.e., it belongs to a receptive field Ri with ci = y, 
and which is positive if x is classified wrong, i.e., it belongs to a receptive field Ri 
with ci :f. y. Denote by f : IR -+ IR some monotonically increasing function. The 
general scheme of GL V Q consists in minimizing the error term 

m 

S = L J(J..L(Xi)) (1) 

i=l 

via a stochastic gradient descent. The concrete choice of f as the identity and 
J..L(x) = 1} • d, d being the squared Euclidian distance of x to the nearest code-


