skip to main content
10.1145/3520312.3534864acmconferencesArticle/Chapter ViewAbstractPublication PagespldiConference Proceedingsconference-collections
research-article
Open access

Productivity assessment of neural code completion

Published: 13 June 2022 Publication History

Abstract

Neural code synthesis has reached a point where snippet generation is accurate enough to be considered for integration into human software development workflows. Commercial products aim to increase programmers’ productivity, without being able to measure it directly. In this case study, we asked users of GitHub Copilot about its impact on their productivity, and sought to find a reflection of their perception in directly measurable user data. We find that the rate with which shown suggestions are accepted, rather than more specific metrics regarding the persistence of completions in the code over time, drives developers’ perception of productivity.

References

[1]
Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. 2016. A Study of Visual Studio Usage in Practice. In IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1. IEEE Computer Society, 124–134. https://doi.org/10.1109/SANER.2016.39
[2]
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR, abs/2108.07732 (2021), arXiv:2108.07732. arxiv:2108.07732
[3]
Gareth Ari Aye, Seohyun Kim, and Hongyu Li. 2021. Learning Autocompletion from Real-World Datasets. In 43rd IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021. IEEE, 131–139. https://doi.org/10.1109/ICSE-SEIP52600.2021.00022
[4]
Moritz Beller, Vince Orgovan, Spencer Buja, and Thomas Zimmermann. 2020. Mind the gap: on the relationship between automatically measured and self-reported productivity. IEEE Software, 38, 5 (2020), 24–31.
[5]
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code. CoRR, abs/2107.03374 (2021), arXiv:2107.03374. arxiv:2107.03374
[6]
Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann, Brian Houck, and Jenna Butler. 2021. The SPACE of Developer Productivity: There’s more to it than you think. Queue, 19, 1 (2021), 20–48.
[7]
Vincent J. Hellendoorn, Sebastian Proksch, Harald C. Gall, and Alberto Bacchelli. 2019. When code completion fails: a case study on real-world completions. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 960–970. https://doi.org/10.1109/ICSE.2019.00101
[8]
Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. 2021. Measuring Coding Challenge Competence With APPS. CoRR, abs/2105.09938 (2021), arXiv:2105.09938. arxiv:2105.09938
[9]
Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy Liang. 2019. SPoC: Search-based Pseudocode to Code. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 11883–11894. https://proceedings.neurips.cc/paper/2019/hash/7298332f04ac004a0ca44cc69ecf6f6b-Abstract.html
[10]
Abigail See, Stephen Roller, Douwe Kiela, and Jason Weston. 2019. What makes a good conversation? How controllable attributes affect human judgments. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics, 1702–1723. https://doi.org/10.18653/v1/n19-1170
[11]
Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. IntelliCode compose: code generation using transformer. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 1433–1443. https://doi.org/10.1145/3368089.3417058
[12]
Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Vicente Franco, and Miltiadis Allamanis. 2021. Fast and Memory-Efficient Neural Code Completion. In 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021. IEEE, 329–340. https://doi.org/10.1109/MSR52588.2021.00045
[13]
Priyan Vaithilingam, Tianyi Zhang, and Elena Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models. In CHI ’22 Late-Breaking Work: Proceedings of the 2022 Conference on Human Factors in Computing Systems.
[14]
Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models. In CHI Conference on Human Factors in Computing Systems Extended Abstracts (CHI EA ’22). Association for Computing Machinery, New York, NY, USA. Article 332, 7 pages. isbn:9781450391566 https://doi.org/10.1145/3491101.3519665
[15]
Chris van der Lee, Albert Gatt, Emiel van Miltenburg, Sander Wubben, and Emiel Krahmer. 2019. Best practices for the human evaluation of automatically generated text. In Proceedings of the 12th International Conference on Natural Language Generation, INLG 2019, Tokyo, Japan, October 29 - November 1, 2019, Kees van Deemter, Chenghua Lin, and Hiroya Takamura (Eds.). Association for Computational Linguistics, 355–368. https://doi.org/10.18653/v1/W19-8643
[16]
Justin D. Weisz, Michael J. Muller, Stephanie Houde, John T. Richards, Steven I. Ross, Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfection Not Required? Human-AI Partnerships in Code Translation. In IUI ’21: 26th International Conference on Intelligent User Interfaces, College Station, TX, USA, April 13-17, 2021, Tracy Hammond, Katrien Verbert, Dennis Parra, Bart P. Knijnenburg, John O’Donovan, and Paul Teale (Eds.). ACM, 402–412. https://doi.org/10.1145/3397481.3450656
[17]
Svante Wold, Michael Sjöström, and Lennart Eriksson. 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 2 (2001), 109–130. issn:0169-7439 https://doi.org/10.1016/S0169-7439(01)00155-1 PLS Methods
[18]
Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2021. In-IDE Code Generation from Natural Language: Promise and Challenges. CoRR, abs/2101.11149 (2021), arXiv:2101.11149. arxiv:2101.11149
[19]
Wen Zhou, Seohyun Kim, Vijayaraghavan Murali, and Gareth Ari Aye. 2021. Improving Code Autocompletion with Transfer Learning. CoRR, abs/2105.05991 (2021), arXiv:2105.05991. arxiv:2105.05991

Cited By

View all
  • (2025)A Journey Through SPACEAgile Processes in Software Engineering and Extreme Programming – Workshops10.1007/978-3-031-72781-8_5(42-50)Online publication date: 11-Jan-2025
  • (2025)Responsible AI in Agile Software Engineering - An Industry PerspectiveAgile Processes in Software Engineering and Extreme Programming – Workshops10.1007/978-3-031-72781-8_4(33-41)Online publication date: 11-Jan-2025
  • (2025)Copilot’s Island of JoyAgile Processes in Software Engineering and Extreme Programming – Workshops10.1007/978-3-031-72781-8_13(123-129)Online publication date: 11-Jan-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
MAPS 2022: Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming
June 2022
79 pages
ISBN:9781450392730
DOI:10.1145/3520312
This work is licensed under a Creative Commons Attribution 4.0 International License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 June 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. code completion
  2. code synthesis
  3. neural networks
  4. productivity

Qualifiers

  • Research-article

Conference

MAPS '22
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3,443
  • Downloads (Last 6 weeks)277
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)A Journey Through SPACEAgile Processes in Software Engineering and Extreme Programming – Workshops10.1007/978-3-031-72781-8_5(42-50)Online publication date: 11-Jan-2025
  • (2025)Responsible AI in Agile Software Engineering - An Industry PerspectiveAgile Processes in Software Engineering and Extreme Programming – Workshops10.1007/978-3-031-72781-8_4(33-41)Online publication date: 11-Jan-2025
  • (2025)Copilot’s Island of JoyAgile Processes in Software Engineering and Extreme Programming – Workshops10.1007/978-3-031-72781-8_13(123-129)Online publication date: 11-Jan-2025
  • (2024)Colaboração com Assistente de Codificação Baseado em IA: Benefícios e DesafiosAnais do XIX Simpósio Brasileiro de Sistemas Colaborativos (SBSC 2024)10.5753/sbsc.2024.237964(228-236)Online publication date: 29-Apr-2024
  • (2024)ChatGPT Code Detection: Techniques for Uncovering the Source of CodeAI10.3390/ai50300535:3(1066-1094)Online publication date: 2-Jul-2024
  • (2024)Student-AI Interaction: A Case Study of CS1 studentsProceedings of the 24th Koli Calling International Conference on Computing Education Research10.1145/3699538.3699567(1-13)Online publication date: 12-Nov-2024
  • (2024)SALLM: Security Assessment of Generated CodeProceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering Workshops10.1145/3691621.3694934(54-65)Online publication date: 27-Oct-2024
  • (2024)Toward Effective AI Support for DevelopersCommunications of the ACM10.1145/3690928Online publication date: 16-Oct-2024
  • (2024)Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMsProceedings of the ACM on Programming Languages10.1145/36897358:OOPSLA2(677-708)Online publication date: 8-Oct-2024
  • (2024)Toward Effective AI Support for DevelopersQueue10.1145/367541622:3(53-78)Online publication date: 10-Jul-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media