
TimeGPT
文章平均质量分 82
介绍TimeGPT的使用
数智笔记
目前从事数据挖掘工作,期望在自己学习总结的同时,也能分享有益的东西给别人,希望有志者能在数据挖掘领域共同进步
展开
-
工具系列:TimeGPT_(7)历史数据预测
我们的时间序列模型提供了一个强大的功能,允许用户在未来预测的同时检索历史预测。需要一定数量的初始观察来生成可靠的预测。因此,在解释输出时,重要的是要意识到前几个观察值作为模型预测的基础,并不是预测值本身。设置为True时,输出的DataFrame将包括不仅由h参数确定的未来预测,还包括历史预测。过去和未来预测的这种综合视图对于理解模型的行为以及随时间评估其性能非常有价值。的影响,并且具有根据数据频率确定的固定时间范围。历史预测以滚动窗口方式生成并连接在一起。请注意,然而,这些历史预测中不包括系列的初始值。原创 2023-12-27 14:10:21 · 684 阅读 · 0 评论 -
工具系列:TimeGPT_(3)处理假期和特殊日期
日历变量和特殊日期是预测应用中最常见的外生变量类型之一。它们为时间序列的当前状态提供了额外的上下文信息,特别是对于基于窗口的模型(如TimeGPT-1)而言。例如,在高频小时数据中,提供年份的当前月份比输入窗口中有限的历史信息更有意义,可以改善预测结果。:确定日期特征后,可能希望对其进行独热编码,特别是如果它们是分类的(例如星期几)。鉴于日历变量的主导使用,我们将常见日历变量的自动创建作为预处理步骤包含在预测方法中。参数,可以有效地将日期属性的时间效应纳入到预测模型中,从而提高其准确性和可解释性。原创 2023-12-26 23:10:43 · 811 阅读 · 1 评论 -
工具系列:TimeGPT_(2)使用外生变量时间序列预测
外生变量在时间序列预测中非常重要,因为它们提供了可能影响预测的额外信息。这些变量可以包括假日标记、营销支出、天气数据或与你正在预测的时间序列数据相关的任何其他外部数据。为了生成预测,我们还需要添加外生变量的未来值。在这种情况下,我们希望预测未来24个步骤,因此每个“unique_id”将有24个观察值。例如,如果你正在预测冰淇淋销售额,温度数据可以作为一个有用的外生变量。要在TimeGPT中加入外生变量,你需要将时间序列数据中的每个点与相应的外部数据配对。的列是TimeGPT用来预测价格的外生变量。原创 2023-12-26 22:52:04 · 1754 阅读 · 0 评论 -
工具系列:TimeGPT_(4)预测区间数据
在时间序列预测中,预测区间根据您设置的置信水平或不确定性,给出了一个估计的范围,未来观测值将在其中。请注意,预测区间水平的选择取决于您的具体用例。对于高风险预测,您可能希望选择更宽的区间以考虑更多的不确定性。对于不太关键的预测,较窄的区间可能是可以接受的。因此,较宽的区间表示对预测的不确定性更大,而较窄的区间则表示更高的置信度。在使用TimeGPT进行时间序列预测时,您可以根据需求设置预测区间的水平。使用TimeGPT进行时间序列预测时,您可以根据您的需求设置预测区间的级别(或级别)。原创 2023-12-27 13:51:24 · 1184 阅读 · 0 评论 -
工具系列:TimeGPT_(9)模型交叉验证
时间序列预测中的主要挑战之一是随着时间的推移固有的不确定性和变异性,因此验证所采用的模型的准确性和可靠性至关重要。交叉验证是一种强大的模型验证技术,特别适用于此任务,因为它提供了有关模型在未见数据上的预期性能的见解,确保在实际场景中部署之前,预测是可靠和有弹性的。该方法需要一个包含按时间排序的数据的数据帧,并采用滚动窗口方案来精确评估模型在不同时间段的性能,从而确保模型的可靠性和稳定性。参数从时间数据进行增强特征工程,该参数可以自动生成关键的与日期相关的特征,也可以接受自定义函数进行定制特征创建。原创 2023-12-27 14:26:34 · 1216 阅读 · 0 评论 -
工具系列:TimeGPT_(1)获取token方式和初步使用
Nixtla的TimeGPT是一种用于时间序列数据的生成式预训练预测模型。TimeGPT可以在没有训练的情况下,仅使用历史值作为输入,为新的时间序列生成准确的预测。TimeGPT可以用于各种任务,包括需求预测、异常检测、财务预测等等。TimeGPT 利用 Transformer 架构和基于 Google 和多伦多大学 2017 年开创性工作的自注意力机制。该模型是根据来自公开数据的 1000 亿个数据点进行训练的。TimeGPT模型的工作方式类似于人类阅读句子的方式-从左到右。原创 2023-12-26 22:42:26 · 4190 阅读 · 12 评论 -
工具系列:TimeGPT_(6)同时预测多个时间序列
TimeGPT提供了一个强大的多系列预测解决方案,它涉及同时分析多个数据系列,而不是单个系列。该工具可以使用广泛的系列进行微调,使您能够根据自己的特定需求或任务来定制模型。以下数据集包含不同电力市场的价格。让我们看看如何进行预测。预测方法的主要参数是包含要预测的时间序列的历史值的输入数据框架。该数据框架可以包含来自许多时间序列的信息。使用“unique_id”列来标识数据集中不同的时间序列。让我们使用StatsForecast来绘制这个系列。原创 2023-12-27 14:02:32 · 1427 阅读 · 1 评论 -
工具系列:TimeGPT_(5)特定领域微调模型
基础模型在大量数据上进行预训练,捕捉广泛的特征和模式。通过微调,可以对模型的参数进行优化,以预测新任务,使其将其广泛的预先存在的知识调整到新数据的要求上。因此,微调作为一个关键的桥梁,将TimeGPT的广泛能力与您任务的特定性联系起来。具体来说,微调的过程包括在输入数据上执行一定数量的训练迭代,以最小化预测误差。然后使用更新后的模型生成预测。建议在微调过程中监控模型的性能并根据需要进行调整。可能会导致更长的训练时间,并且如果管理不当可能会导致过拟合。请记住,微调是一个强大的功能,但应该谨慎使用。原创 2023-12-27 13:55:19 · 996 阅读 · 4 评论 -
工具系列:TimeGPT_(8)使用不规则时间戳进行时间序列预测
在处理时间序列数据时,时间戳的频率是一个关键因素,可以对预测结果产生重大影响。像每日、每周或每月这样的常规频率很容易处理。然而,像工作日这样的不规则频率(不包括周末)对于时间序列预测方法来说可能是具有挑战性的。我们的预测方法可以处理这种不规则的时间序列数据,只要您指定了序列的频率。例如,在工作日的情况下,频率应该传递为’B’。如果没有这个参数,方法可能无法自动检测频率,特别是当时间戳是不规则的时候。# 导入load_dotenv函数,用于加载.env文件中的环境变量 load_dotenv()原创 2023-12-27 14:19:08 · 1732 阅读 · 0 评论