YOLOv12最新创新改进系列:V12融合BoTNet模块,ResNet的最后三个的卷积层替换成MHSA层,融合CNN+自然语言处理技术的优势,提升检测效果!
购买相关资料后畅享一对一答疑!
YOLOv12最新创新改进系列:V12融合BoTNet模块,ResNet的最后三个的卷积层替换成MHSA层,融合CNN+自然语言处理技术的优势,提升检测效果!
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
一、 BoTNet简介
论文地址:https://arxiv.org/abs/2101.11605
BoTNet是一种简单但功能强大的主干网络,该架构将注意力模块纳入了包括图像分类,目标检测,实例分割等多种计算机视觉任务。通过仅将ResNet的最后三个的卷积层替换成MHSA层,并不进行其他改变,在墓边检测方面显著改善了极限,同时减少了参数两,从而使得延迟最小化。
Transformer中的MHSA和BoTNet中的MHSA的区别:
归一化,Transformer使用 Layer Normalization,而BoTNet使用 Batch Normalization。
非线性激活,Transformer仅仅使用一个非线性激活在FPN block模块中,BoTNet使用了3个非线性激活。
输出投影,Transformer中的MHSA包含一个输出投影,BoTNet则没有。
优化器,Transformer使用Adam优化器训练,BoTNet使用sgd+ momentum
AI学术叫叫兽er在这!家人们,给我遥遥领先!!!
AI学术叫叫兽er在这!家人们,给我遥遥领先!!!
AI学术叫叫兽er在这!家人们,给我遥遥领先!!!
二、 改进教程
2.1 修改YAML文件
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
2.2 新建.py
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
2.3 修改tasks.py
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
三、验证是否成功即可
执行命令
python train.py
改完收工!
关注B站:AI学术叫叫兽
从此走上科研快速路
遥遥领先同行!!!!
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
写在最后
学术因方向、个人实验和写作能力以及具体创新内容的不同而无法做到一通百通,所以本文作者即B站Up主:Ai学术叫叫兽
在所有B站资料中留下联系方式以便在科研之余为家人们答疑解惑,本up主获得过国奖,发表多篇SCI,擅长目标检测领域,拥有多项竞赛经历,拥有软件著作权,核心期刊等经历。因为经历过所以更懂小白的痛苦!因为经历过所以更具有指向性的指导!
祝所有科研工作者都能够在自己的领域上更上一层楼!!!