YOLOv12最新创新改进系列::引入BiFPN网络可学习的权重来学习不同输入特征的重要性,同时重复应用自上而下和自下而上的多尺度特征融合.,亲测显著涨点!

YOLOv12最新创新改进系列::引入BiFPN网络可学习的权重来学习不同输入特征的重要性,同时重复应用自上而下和自下而上的多尺度特征融合.,亲测显著涨点!

购买相关资料后畅享一对一答疑


详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

链接在此

一 、BiFPN网络

BiFPN 的主要思想:高效双向跨尺度连接和加权特征融合。

多尺度特征表示是目标检测的重点方向之一,作者认为其主要困难是如何有效地表示和处理多尺度特征。

早期的检测器通常直接根据从骨干网络中提取的金字塔特征层次结构进行预测 。
特征金字塔网络 (FPN)提出了一种自上而下的途径来组合多尺度特征。
基于FPN,PANet 在 FPN 之上添加了一个额外的自下而上的路径聚合网络;
NAS‑FPN [8]利用神经架构搜索来自动设计特征网络拓扑。虽然实现了更好的性能,但 NAS‑FPN 在搜索过程中需要数千 GPU 小时,并且生成的特征网络是不规则的,因此难以解释。
BiFPN:引入可学习的权重来学习不同输入特征的重要性,同时重复应用自上而下和自下而上的多尺度特征融合.
下图表示各类网络模型的结构:

在这里插入图片描述

二、亮点

( a ) FPN 引入自上而下的路径来融合从 3 级到 7 级(P3 ‑ P7)的多尺度特征;
( b ) PANet 在 FPN 之上添加了一个额外的自下而上的路径;
( c ) NAS‑FPN 使用神经架构搜索找到不规则的特征网络拓扑,然后重复应用相同的块;
( d ) BiFPN 双向跨尺度连接和加权特征融合,具有更好的准确性和效率权衡。

简单了解过后,我们开始改进!

三、 改进教程

3.1 修改YAML文件

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

3.2 新建.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

3.3 修改tasks.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

四、验证是否成功即可

执行命令

python train.py

改完收工!
关注B站:AI学术叫叫兽
从此走上科研快速路
遥遥领先同行!!!!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

五、写在最后

学术因方向、个人实验和写作能力以及具体创新内容的不同而无法做到一通百通,所以本文作者即B站Up主:Ai学术叫叫兽
在所有B站资料中留下联系方式以便在科研之余为家人们答疑解惑,本up主获得过国奖,发表多篇SCI,擅长目标检测领域,拥有多项竞赛经历,拥有软件著作权,核心期刊等经历。因为经历过所以更懂小白的痛苦!因为经历过所以更具有指向性的指导!

祝所有科研工作者都能够在自己的领域上更上一层楼!!!

[详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在动态中有链接,感谢支持!祝科研遥遥领先!](

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值