
YOLOv8/v11改进

文章平均质量分 97
本专栏为YOLOv8改进,也会持续更新YOLOv11改进,魔改对比实验,结合顶会文章助力涨点,适合目标检测、分割等改进,保姆级的手把手教学,专为学习YOLOv8、YOLOv11、YOLOv12的同学而设计,小白也能轻松上手!
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
挂科边缘
擅长计算机视觉,YOLO目标检测、分割、图像修复、超分辨率重建 等,擅长web、pyqt界面可视化,好内容持续更新中,来这里跟大家一起学习,共同进步
展开
-
《手把手教你YOLOv8/YOLOv11实战》,改进专栏目录和介绍
YOLOv8 是目前比较火和比较成熟的深度学习框架,是2023年1月发布的,由 Ultralytics 团队开发。Ultralytics自YOLOv5 开始一直积极维护和更新 YOLO 框架,因此 YOLOv8 也享有持续的维护与升级支持。因此我写下《手把手教你YOLOv8实战》专栏,专门为那些对计算机视觉、深度学习、以及目标检测技术感兴趣的读者设计。通过本专栏,你将深入理解 YOLOv8 的核心原理与实际应用,从0 开始学习并掌握如何使用 YOLOv8 完成各类目标检测任务,帮助你快速上手并掌握 YOLO原创 2024-08-09 10:47:42 · 6499 阅读 · 9 评论 -
手把手教你完成YOLOv11 PySide6目标检测界面搭建,使用Qt6设计YOLOv11检测系统,前台系统+后台管理系统开发实战,可用于大论文凑工作量或毕设必备,全网最详细教程
目标检测是计算机视觉中的重要任务,广泛应用于安防监控、自动驾驶、智能家居等领域。YOLO系列模型由于其高效的检测速度和较高的准确率,成为目标检测任务的首选算法之一。本项目结合 YOLOv11 与 PySide6,构建了一个图形化界面,便于用户进行目标检测的操作和展示,实现对图片、视频和摄像头的实时目标检测,不仅可以用于大论文的工作量展示,还可以作为毕业设计。系统功能有:目标检测程序实现图片/视频/摄像头检测,AI 问答界面(deepseek大模型接口,流式输出)、退出登录、界面保存登录状态、个人信息修改等原创 2025-01-16 11:14:45 · 2658 阅读 · 0 评论 -
手把手教你完成YOLOv8 PyQt5和PySide6目标检测界面搭建,前台系统+后台管理系统开发实战,可用于大论文凑工作量或毕设必备,全网最详细教程
目标检测是计算机视觉中的重要任务,广泛应用于安防监控、自动驾驶、智能家居等领域。YOLO系列模型由于其高效的检测速度和较高的准确率,成为目标检测任务的首选算法之一。本项目结合 YOLOv8 与 PyQt5,构建了一个图形化界面,便于用户进行目标检测的操作和展示,实现对图片、视频和摄像头的实时目标检测,不仅可以用于大论文的工作量展示,还可以作为毕业设计。支持目标检测、目标分割等模型进来检测原创 2024-12-25 23:09:58 · 8463 阅读 · 16 评论 -
基于Django+Vue3的目标检测系统设计与实现,Web前后端分离,YOLOv11 Web目标检测,实现图片检测、视频检测、摄像头检测、登录、注册和个人中心功能,全网独发
基于Django+Vue3的智能目标检测系统设计与实现,Web前后端分离,YOLOv11 Web目标检测,实现图片检测、视频检测、摄像头检测、登录、注册和个人中心功能原创 2025-04-05 01:45:49 · 158 阅读 · 0 评论 -
基于Django+Vue3的智能目标检测系统设计与实现,Web前后端分离,YOLOv8 Web目标检测,实现图片检测、视频检测、摄像头检测、登录、注册和个人中心功能,全网独发
目标检测是计算机视觉中的重要任务,广泛应用于安防监控、自动驾驶、智能家居等领域。YOLO系列模型由于其高效的检测速度和较高的准确率,成为目标检测任务的首选算法之一。本项目结合 YOLOv8 与 Django + Vue3,构建了一个通用的 Web 前后端系统,便于用户进行目标检测的操作和展示,实现对图片、视频实时目标检测,不仅可以用于大论文的工作量展示,还可以作为毕业设计。支持更换自己模型、图片检测、实时视频检测、置信度调节和IoU参数调节。同时支持目标检测、实例分割、关键点检测等任务原创 2025-03-29 01:27:00 · 1116 阅读 · 0 评论 -
YOLOv11改进,YOLOv11添加CPA-Enhancer自适应增强器,提高低照度目标检测
CPA-Enhancer 是首个在目标检测任务中利用 CoT 提示的自适应增强方法,突破了 现有方法必须知道退化类型的局限。无需单独训练多个模型,可 在未知退化环境下动态调整增强策略,显著提高 YOLOv3 等目标检测器的检测性能。原创 2025-03-28 23:53:02 · 136 阅读 · 3 评论 -
YOLOv8改进,YOLOv8引入CPA-Enhancer自适应增强器,提高低照度目标检测
CPA-Enhancer 是首个在目标检测任务中利用 CoT 提示的自适应增强方法,突破了 现有方法必须知道退化类型的局限。无需单独训练多个模型,可 在未知退化环境下动态调整增强策略,显著提高 YOLOv3 等目标检测器的检测性能。原创 2025-03-28 23:44:06 · 85 阅读 · 0 评论 -
YOLOv11改进,YOLOv11检测头融合自适应膨胀卷积 (FADC),并添加小目标检测层(四头检测),适合目标检测、分割等
使用频率分析对扩张卷积进行了深入探索,将膨胀的分配重新定义为一个涉及平衡有效带宽和感受野的权衡问题。引入了频率自适应扩张卷积 (FADC)。它采用自适应膨胀率 (AdaDR)、自适应内核 (AdaKern) 和频率选择(FreqSelect) 策略。AdaDR 以空间变化的方式动态调整扩张速率,以实现有效带宽和感受野之间的平衡。AdaKern 自适应调整内核以充分利用带宽,而 FreqSelect 学习频率平衡功能以鼓励较大的感受野。原创 2025-03-23 22:00:49 · 142 阅读 · 0 评论 -
YOLOv8改进,YOLOv8检测头融合自适应膨胀卷积 (FADC),并添加小目标检测层(四头检测),适合目标检测、分割等
扩张卷积通过在连续元素之间插入间隙来扩大感受野,广泛用于计算机视觉。作者从谱分析的角度提出了三种策略来改进扩张卷积的各个阶段。与将全局膨胀率固定为超参数的传统做法不同,我们引入了频率自适应膨胀卷积 (FADC),它根据局部频率分量在空间上动态调整膨胀率。 随后,我们设计了两个插件模块,以直接提高有效带宽和感受野大小。Adaptive Kernel (AdaKern) 模块将卷积权重分解为低频和高频分量,并按通道动态调整这些分量之间的比率。原创 2025-03-23 21:24:06 · 215 阅读 · 0 评论 -
基于YOLOv11的水果/商品/食堂/蔬菜/饮料/书籍识别与计价系统,前台+后台管理系统
基于YOLOv11的水果/商品/食堂/蔬菜/饮料/书籍识别与计价系统,前台+后台管理系统原创 2025-03-23 13:00:12 · 170 阅读 · 0 评论 -
手把手教你完成基于YOLOv8的水果/商品/食堂/蔬菜/饮料/书籍识别与计价系统,前台+后台管理系统
手把手教你完成基于YOLOv8的商店的水果/商品/食堂/蔬菜/饮料/书籍识别与计价系统,前台+后台管理员系统,可进行目标检测的操作和展示,实现对图片、视频和摄像头的实时目标检测原创 2025-03-21 17:04:13 · 1032 阅读 · 2 评论 -
YOLOv11改进,YOLOv11添加DICAM,用于水下图像增强模块,以提高朦胧水下图像的质量、对比度和色偏
在水下环境中,成像设备会出现水浑浊、光衰减、散射和颗粒问题,导致图像质量低、对比度差和彩色图像有偏差。这给使用传统视觉技术进行水下状态监测和检查带来了巨大挑战。近年来,水下图像增强因其在提高当前计算机视觉任务在水下目标检测和分割中的性能方面发挥着关键作用而受到越来越多的关注。由于主要从自然场景构建的现有方法在提高色彩丰富度和分布方面存在性能限制,作者提出了一种新颖的基于深度学习的方法,即 Deep Inception 和 Channel-wise Attention Modules (DICAM),以提高朦原创 2025-03-20 10:24:37 · 91 阅读 · 0 评论 -
YOLOv8改进,YOLOv8引入DICAM,用于水下图像增强模块,以提高朦胧水下图像的质量、对比度和色偏
在水下环境中,成像设备会出现水浑浊、光衰减、散射和颗粒问题,导致图像质量低、对比度差和彩色图像有偏差。这给使用传统视觉技术进行水下状态监测和检查带来了巨大挑战。近年来,水下图像增强因其在提高当前计算机视觉任务在水下目标检测和分割中的性能方面发挥着关键作用而受到越来越多的关注。由于主要从自然场景构建的现有方法在提高色彩丰富度和分布方面存在性能限制,作者提出了一种新颖的基于深度学习的方法,即 Deep Inception 和 Channel-wise Attention Modules (DICAM),以提高朦原创 2025-03-18 20:41:58 · 221 阅读 · 0 评论 -
YOLOv11改进,YOLOv11添加HFF模块,增强特征融合能力
在卷积神经网络的推动下,医学图像分类得到了迅速发展网络(CNN)。作者提出了一种三分支分层多尺度特征融合网络结构作为一种新的医学图像分类方法被称为HiFuse。它可以融合Transformer和CNN来自多尺度层次结构,不破坏各自的建模,因此从而提高各种医学图像的分类精度。一个并行的局部层次结构设计了全局特征块,有效地提取局部特征和全局表示在各种语义尺度下,具有在不同尺度下建模的灵活性和线性计算能力与图像大小相关的复杂性。此外,还提出了一种自适应分层特征融合块(HFF块)设计为综合利用在不同层次上获得的特征原创 2025-03-17 16:42:31 · 220 阅读 · 0 评论 -
YOLOv8改进,YOLOv8引入HFF模块,增强特征融合能力
局部分支(Local Block):使用 3×3 深度卷积提取局部信息。全局分支(Global Block):采用 Swin Transformer 提取全局信息。融合分支(HFF Block):包括通道注意力、空间注意力、残差 MLP、快捷连接,自适应融合各层次信息。下图摘自论文论文地址代码地址下文都是手把手教程,跟着操作即可添加成功。原创 2025-03-17 15:36:59 · 118 阅读 · 0 评论 -
YOLOv12目标检测界面搭建,使用Qt6设计YOLOv12检测系统,前台系统+后台管理系统开发实战,可用于大论文凑工作量或毕设必备,全网最详细教程
YOLOv12目标检测界面搭建,使用Qt6设计YOLOv12检测系统,前台系统+后台管理系统开发实战,可用于大论文凑工作量或毕设必备,全网最详细教程原创 2025-03-08 02:49:37 · 624 阅读 · 4 评论 -
YOLOv8中文标签训练,并解决绘图乱码和推理乱码情况,Windows系统和Linux系统都能用
YOLOv8 使用中文标签训练时候,生成的结果图是乱码,本文将解决绘图乱码和推理乱码情况,Windows 系统和 Linux 系统都能用。原创 2025-03-06 00:56:08 · 198 阅读 · 0 评论 -
YOLOv12环境配置,手把手教你使用YOLOv12训练自己的数据集和推理(附YOLOv12网络结构图),全文最详细教程
YOLO 系统尊嘟太卷了吧,YOLOv11 还没完明白,YOLOv12 就重磅来袭,YOLOv12 是由纽约州立大学联合中科院在 2025年2月19 日发布,从 YOLOv12 论文题目我们大概就知道做了那些更新 ,下图是YOLOv12 在 COCO 数据集上的性能表现引入区域注意力机制(area-attention):通过引入十字形窗口自我注意机制,沿水平和垂直条纹计算注意力机制,纵横交错的注意机制。如下图所示,区域注意力采用最多简单的等分方法,将特征地图垂直或水平划分为 L 个区域。原创 2025-02-24 17:12:25 · 9817 阅读 · 46 评论 -
YOLOv8改进,YOLOv8检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等,全网独发
YOLOv8改进,YOLOv8检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等,全网独发原创 2025-01-25 20:50:53 · 1652 阅读 · 0 评论 -
YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务
YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务原创 2025-01-27 20:29:13 · 1665 阅读 · 0 评论 -
YOLOv11改进,YOLOv11添加ASFF检测头,并添加小目标检测层(四头检测),适合目标检测、分割等任务,全网首发
YOLOv11改进,YOLOv11添加ASFF检测头,并添加小目标检测层(四头检测),适合目标检测、分割等任务,全网首发原创 2025-01-24 12:54:55 · 1620 阅读 · 0 评论 -
YOLOv11改进,YOLOv11检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等任务
YOLOv11改进,YOLOv11检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等任务原创 2025-01-22 12:59:20 · 1001 阅读 · 0 评论 -
YOLOv8改进,YOLOv8检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等
YOLOv8改进,YOLOv8检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等原创 2025-01-22 11:56:31 · 503 阅读 · 0 评论 -
YOLOv11改进,YOLOv11检测头融合DiverseBranchBlock(多样分支块),并添加小目标检测层(四头检测),适合目标检测、分割等任务
YOLOv11检测头融合DiverseBranchBlock(多样分支块),并添加小目标检测层(四头检测)。多样分支块(DiverseBranchBlock)的代表性设计如下图所示(摘自论文):1.DiverseBranchBlock(DBB)采用多分支拓扑结构,包括多尺度卷积、顺序1×1-K×K卷积、平均池化和分支相加。这些具有不同感受野和复杂度的路径操作可以丰富特征空间,就像Inception架构一样。2.DiverseBranchBlock(DBB)可以在推理时等效地转换为单个卷积。原创 2025-01-20 14:32:28 · 620 阅读 · 0 评论 -
YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等
YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测。多样分支块(DiverseBranchBlock)的代表性设计如下图所示(摘自论文):1.DiverseBranchBlock(DBB)采用多分支拓扑结构,包括多尺度卷积、顺序1×1-K×K卷积、平均池化和分支相加。这些具有不同感受野和复杂度的路径操作可以丰富特征空间,就像Inception架构一样。2.DiverseBranchBlock(DBB)可以在推理时等效地转换为单个卷积原创 2025-01-20 13:46:24 · 530 阅读 · 0 评论 -
手把手教你完成基于深度学习的水果计价系统,使用PySide6设计YOLOv8水果计价检测系统,包含模型+训练结果,全网最详细教程
手把手教你完成基于深度学习的水果计价系统,使用PySide6设计YOLOv8水果计价检测系统,包含模型+训练结果,全网最详细教程原创 2025-01-19 13:14:33 · 427 阅读 · 0 评论 -
YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
RepConv 通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和训练效果,而在推理时,通过重参数化将这些操作转化为单一的卷积层,从而减少计算量和提高速度。训练阶段:在训练时,使用常规的多分支结构,包含多个卷积层、BN 层以及跳跃连接。这种结构可以使模型在训练过程中具有更高的表达能力,从而提高训练性能。这时,每个卷积层可以通过与不同的卷积核和跳跃连接组合来建模复杂的特征。原创 2025-01-18 23:49:08 · 664 阅读 · 0 评论 -
YOLOv8改进,YOLOv8检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等
RepConv 通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和训练效果,而在推理时,通过重参数化将这些操作转化为单一的卷积层,从而减少计算量和提高速度。训练阶段:在训练时,使用常规的多分支结构,包含多个卷积层、BN 层以及跳跃连接。这种结构可以使模型在训练过程中具有更高的表达能力,从而提高训练性能。这时,每个卷积层可以通过与不同的卷积核和跳跃连接组合来建模复杂的特征。原创 2025-01-18 23:18:38 · 456 阅读 · 0 评论 -
YOLOv11改进,YOLOv11检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
RFAConv的核心思想是解决卷积神经网络中的卷积核参数共享问题,并通过感受野空间特征提高网络的性能。其创新在于引入了一种新的注意力机制——感受野注意力(RFA),该机制不仅关注空间特征,还有效地解决了大尺寸卷积核的参数共享问题,从而提升了网络的表达能力。核心思想如下:卷积核参数共享问题:在标准卷积中,同一个卷积核的参数被应用于整个图像的不同感受野区域,因此不同位置的特征共享相同的卷积核参数,这会导致模型在某些情况下无法充分捕捉不同位置的局部差异。原创 2025-01-17 11:17:26 · 606 阅读 · 0 评论 -
YOLOv8改进,YOLOv8检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等
RFAConv的核心思想是解决卷积神经网络中的卷积核参数共享问题,并通过感受野空间特征提高网络的性能。其创新在于引入了一种新的注意力机制——感受野注意力(RFA),该机制不仅关注空间特征,还有效地解决了大尺寸卷积核的参数共享问题,从而提升了网络的表达能力。核心思想如下:卷积核参数共享问题:在标准卷积中,同一个卷积核的参数被应用于整个图像的不同感受野区域,因此不同位置的特征共享相同的卷积核参数,这会导致模型在某些情况下无法充分捕捉不同位置的局部差异。原创 2025-01-16 17:21:54 · 461 阅读 · 0 评论 -
YOLOv11改进,YOLOv11自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发
YOLOv11改进,YOLOv11自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发原创 2025-01-12 15:02:12 · 314 阅读 · 0 评论 -
YOLOv8改进,YOLOv8自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发
YOLOv8改进,YOLOv8自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发原创 2025-01-12 14:49:40 · 190 阅读 · 0 评论 -
YOLOv11改进,YOLOv11添加HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建
HAttention 注意力机制结合了传统的空间注意力和通道注意力,同时引入了一种混合策略来灵活调整两者的权重,旨在更精确地捕捉图像中的重要信息,模型能够在不同层次、不同领域的特征中找到有意义的上下文关联,从而提升图像修复和超分辨率重建的效果。空间注意力主要关注图像中的位置关系。通过计算图像中的每个像素点对目标任务的重要性来调整特征图的空间分布。空间注意力能够帮助模型聚焦于图像中重要的区域,忽略不相关的背景。通道注意力则关注特征图中不同通道的相对重要性。原创 2025-01-11 12:45:19 · 326 阅读 · 0 评论 -
YOLOv8改进,YOLOv8引入HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建
HAttention 注意力机制结合了传统的空间注意力和通道注意力,同时引入了一种混合策略来灵活调整两者的权重,旨在更精确地捕捉图像中的重要信息,模型能够在不同层次、不同领域的特征中找到有意义的上下文关联,从而提升图像修复和超分辨率重建的效果。空间注意力主要关注图像中的位置关系。通过计算图像中的每个像素点对目标任务的重要性来调整特征图的空间分布。空间注意力能够帮助模型聚焦于图像中重要的区域,忽略不相关的背景。通道注意力则关注特征图中不同通道的相对重要性。原创 2025-01-11 11:51:37 · 217 阅读 · 0 评论 -
YOLOv11改进,YOLOv11自研检测头融合HyCTAS的Self_Attention自注意力机制(2024),并添加小目标检测层(四头检测),适合目标检测、分割、关键点任务
自注意力(Self-Attention)机制是HyCTAS框架中的一个重要组成部分,是一种能够捕捉输入序列中不同位置之间关系的机制。核心思想是:对于输入的每一个元素,它都会通过与所有其他元素的关系来重新计算自己的表示,这种机制允许网络根据上下文信息动态地调整其对输入各部分的关注程度。在论文中,自注意力模块主要用于捕获长程依赖,这意味着它能够关注输入数据中远离当前位置的相关信息。例如,在图像分割任务中,自注意力模块能够帮助网络理解图像中不同区域之间的关系,提升网络对图像的整体理解能力。。原创 2025-01-10 17:51:37 · 417 阅读 · 0 评论 -
YOLOv8改进,YOLOv8自研检测头融合HyCTAS的Self_Attention自注意力机制,2024,并添加小目标检测层(四头检测),适合目标检测、分割、关键点任务
自注意力(Self-Attention)机制是HyCTAS框架中的一个重要组成部分,是一种能够捕捉输入序列中不同位置之间关系的机制。核心思想是:对于输入的每一个元素,它都会通过与所有其他元素的关系来重新计算自己的表示,这种机制允许网络根据上下文信息动态地调整其对输入各部分的关注程度。在论文中,自注意力模块主要用于捕获长程依赖,这意味着它能够关注输入数据中远离当前位置的相关信息。例如,在图像分割任务中,自注意力模块能够帮助网络理解图像中不同区域之间的关系,提升网络对图像的整体理解能力。原创 2025-01-10 17:06:53 · 275 阅读 · 0 评论 -
YOLOv11改进 ,YOLOv11改进主干网络为StarNet,CVPR2024,助力模型涨点
StarNet 是一种基于“星形操作”特性的高效神经网络架构,充分利用了星形操作在低维空间计算时能产生高维特征的优势,主要用于提高深度神经网络的表示能力,同时保持计算效率。星形操作(star operation)是 StarNet的核心运算。其特点是能够在计算上保持高效的同时,通过元素级乘法将低维特征映射到高维空间,显著提升特征的表达能力。星形操作将输入特征通过元素级乘法转换成一个高维空间的特征表示,从而增加隐式维度。这个操作是通过两个权重矩阵与输入特征的元素级乘积实现的。原创 2025-01-08 21:27:12 · 367 阅读 · 0 评论 -
YOLOv8改进 ,YOLOv8改进主干网络为StarNet,CVPR2024,助力模型涨点
StarNet 是一种基于“星形操作”特性的高效神经网络架构,充分利用了星形操作在低维空间计算时能产生高维特征的优势,主要用于提高深度神经网络的表示能力,同时保持计算效率。星形操作(star operation)是 StarNet的核心运算。其特点是能够在计算上保持高效的同时,通过元素级乘法将低维特征映射到高维空间,显著提升特征的表达能力。星形操作将输入特征通过元素级乘法转换成一个高维空间的特征表示,从而增加隐式维度。这个操作是通过两个权重矩阵与输入特征的元素级乘积实现的。原创 2024-12-29 14:18:29 · 607 阅读 · 0 评论 -
YOLOv11改进,YOLOv11添加即插即用的空间和通道协同注意力模块SCSA,2024,二次创新C3k2结构
空间注意力(SMSA)模块:目标: 提取每个特征的多语义空间信息,生成空间先验。空间注意力主要集中在不同特征图的空间维度(即图像的高度和宽度),通过对特征进行分解,提取在空间维度上不同语义信息的关注区域。通道注意力(PCSA)模块:建立通道之间的相互依赖关系,通过通道级别的自注意力机制来学习特征通道间的相关性。原创 2024-12-27 00:12:43 · 247 阅读 · 0 评论 -
YOLOv8改进,YOLOv8引入即插即用的空间和通道协同注意力模块SCSA,2024,二次创新C2f结构
空间注意力(SMSA)模块:目标: 提取每个特征的多语义空间信息,生成空间先验。空间注意力主要集中在不同特征图的空间维度(即图像的高度和宽度),通过对特征进行分解,提取在空间维度上不同语义信息的关注区域。通道注意力(PCSA)模块:建立通道之间的相互依赖关系,通过通道级别的自注意力机制来学习特征通道间的相关性。原创 2024-12-26 23:51:22 · 189 阅读 · 0 评论