Kalman滤波

卡尔曼滤波器

  卡尔曼滤波器可以分为时间更新方程和测量更新方程。时间更新方程(即预测阶段)根据前一时刻的状态估计值推算当前时刻的状态变量先验估计值和误差协方差先验估计值;测量更新方程(即更新阶段)负责将先验估计和新的测量变量结合起来构造改进的后验估计。时间更新方程和测量更新方程也被称为预测方程和校正方程。因此卡尔曼算法是一个递归的预测——校正方法。
(1)、预测(Prediction):根据上一时刻(k-1时刻)的后验估计值来估计当前时刻(k时刻)的状态,得到k时刻的先验估计值,卡尔曼滤波器时间更新方程:
在这里插入图片描述
(2)、 更新(Update):使用当前时刻的测量值来更正预测阶段估计值, 得到当前时刻的后验估计值,卡尔曼滤波 器状态更新方程:
在这里插入图片描述

下面来一个个详细剖析每个参数:
1、 和 :分别表示k-1时刻和k时刻的后验状态估计值,是滤波的结果之一,即更新后的结果,也叫最优估计(估计的状态,根据理论,我们不可能知道每时刻状态的确切结果所以叫估计)。
2、 :k时刻的先验状态估计值,是滤波的中间计算结果,即根据上一时刻(k-1时刻)的最优估计预测的k时 刻的结果,是预测方程的结果。
3、 和 :分别表示k-1时刻和k时刻的后验估计协方差(即 和 的协方差,表示状态的不确定度),是滤波的结果之一。
4、 :k时刻的先验估计协方差( 的协方差),是滤波的中间计算结果。
5、H:是状态变量到测量(观测)的转换矩阵,表示将状态和观测连接起来的关系,卡尔曼滤波里为线性关系, 它负责将m维的测量值转换到n维,使之符合状态变量的数学形式,是滤波的前提条件之一。
6、 :测量值(观测值),是滤波的输入。
7、 :滤波增益矩阵,是滤波的中间计算结果,卡尔曼增益,或卡尔曼系数。
8、A:状态转移矩阵,实际上是对目标状态转换的一种猜想模型。例如在机动目标跟踪中,状态转移矩阵常常用来对目标的运动建模,其模型可能为匀速直线运动或者匀加速运动。当状态转移矩阵不符合目标的状态转换模型时,滤波会很快发散。
9、Q:过程激励噪声协方差(系统过程的协方差)。该参数被用来表示状态转换矩阵与实际过程之间的误差。因为我们无法直接观测到过程信号,所以Q的取值是很难确定的。一般有两种思路:一是在某些稳定的过程可以假定它是固定的矩阵,通过寻找最优的Q值使滤波器获得更好的性能,这是调整滤波器参数的主要手段,Q一般是对角 阵,且对角线上的值很小,便于快速收敛;二是在自适应卡尔曼滤波(AKF)中Q矩阵是随时间变化的。
10、R:表示测量噪声协方差,它是一个数值,这是和仪器相关的一个特性,作为已知条件输入滤波器。需要注意的是这个值过大过小都会使滤波效果变差,且R取值越小收敛越快,所以可以通过实验手段寻找合适的R值再利用它进行真实的滤波。
11、B:是将输入转换为状态的矩阵。
12、 :实际观测和预测观测的残差,和卡尔曼增益一起修正先验(预测),得到后验

学习OpenCV2——卡尔曼滤波(KalmanFilter)详解
https://blog.csdn.net/gdfsg/article/details/50904811

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值